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1. INTRODUCTION

In the theory of discrete dynamical systems, a particular role is played by the dynamics
of functions mapping the unit interval into itself (see e.g. monographs [2, 3, 17]). In
a natural way, this fact relates to the real functions theory. An intensive study of
dynamics of functions being important from the point of view of real analysis began
this century. These studies were initiated, among others, by the papers [9, 26,27].

In this paper we will consider, among others, three families of functions being
important from the point of view of real functions theory: almost continuous functions
(in the sense of Stallings), Darboux Baire one functions and approximately continuous
functions. The family of all almost continuous functions f : X → Y will be denoted
by A(X,Y ), the family of all Darboux Baire one functions – by DB1(X,Y ), the
family of all approximately continuous functions – by Ca(X,Y ) and the family of all
continuous functions – by C(X,Y ). Moreover, we will write A(X), DB1(X), Ca(X),
C(X), respectively, if X = Y and A, DB1, Ca, C if X = Y = [0, 1].

In the literature one can find different definitions of chaos. However, it is com-
monly accepted that entropy is some kind of “measure of chaos”. There are two basic
definitions of entropy for discrete dynamical systems: the “covery” concept introduced
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by Adler, Konheim and McAndrew in [1] and the Bowen-Dinaburg concept based on
notions of a “separated set” or a “span set” ([4, 11]).

Topological entropy has been defined for continuous maps of a compact space,
while metric entropy is defined for measurable functions which may be “strongly”
discontinuous. However, it turned out that in many cases there is a need to consider
discrete dynamical systems with respect to discontinuous functions. So the papers
connected with this topic have appeared (e.g. [8,26,27]). In 2005, the paper [9] showing
that Bowen-Dinaburg definition of entropy may be applied for discontinuous functions
was published. In the literature it was mainly referred to Darboux-like functions. At
the beginning these references were connected with generalizations of known results
concerning dynamical systems of continuous functions, e.g. Sharkovskĭı’s theorem [27],
or basic theorems regarding entropy [9]. Starting from the paper [22] (see also [21]),
there is a new trend of considering results which are not the generalizations of prop-
erties known for continuous functions. The results presented in this paper correspond
with this field of research.

Simultaneously, analysis of different examples of functions (not only of real vari-
ables – see [23]) has resulted in an interesting observation that entropy of a function
may be focused at the point ([22, 23]). This enabled us to define the notion of the
entropy point of a function ([23]) in quite a general spaces. Analysis of the obtained
results shows that particularly interesting are ∞-entropy points (a formal definition
of this notion is presented in a further part of the paper). That is why we have
concentrated our investigations on such points, referring the considerations to the
classes of functions mentioned at the beginning.

2. PRELIMINARIES

We will use standard definitions and notations. In order to avoid misunderstandings
and to make the paper more readable, we will present some symbols, definitions and
statements1) used in it.

We will use the letters R and N to denote the real numbers and positive integers,
respectively. The unit interval [0, 1] with the natural metric will be denoted by I.
The symbol int(A) will stand for the interior of a set A ⊂ I in natural topology. The
cardinality of a set A will by denoted by card(A). Our discussion will be restricted
to the functions mapping the unit interval into itself (in some proofs we will consider
functions defined on subsets of I, but it will always be emphasised).

The graph of a function f will be denoted by Gr(f). The symbols Fix(f) and
C(f) will stand for the sets of all fixed points of f and of all continuity points of f ,
respectively. Moreover, if A ⊂ I, then we will write f � A for the restriction of f to
the set A.

Our considerations will be concentrated on the approximation of functions from
a fixed family F by functions from another family K, so the thing is to find a set

1) The paper deals with three theories: real analysis, discrete dynamical systems and topology (with
some elements of fixed point theory). That is why it seems to be advisable to recall theorems
used in our considerations.
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S ⊂ K in an arbitrary neighborhood of f ∈ F . For that purpose we will consider
two topologies. The most common is the topology of uniform convergence generated
by the metric ρu(f, g) = supx∈I |f(x) − g(x)|. As it will be shown later, it is not
enough to use only this topology in our considerations. That is why we will also
consider the compact-open topology. The choice of the compact-open topology for
our considerations is not accidental. If we consider this topology and the topology of
uniform convergence in the family of continuous functions C(X,Y ), then, with some
natural assumptions concerning X and Y , both these topologies coincide. That is
why they may be treated as “close topologies”. Since our discussion deals with wider
classes than C(X,Y ), distinguishing these topologies is fully justified. It is worth
pointing out that from the topological point of view, the compact-open topology has
more interesting properties than for example the topology of pointwise convergence,
especially if we consider it not only in the context of the domain and the range of a
function but also with respect to properties connected with some points of the domain
of a function (with some natural assumptions about X and Y one can prove that in
the set C(X,Y ) the compact-open topology is the weakest one for which a function
T : C(X,Y )×X → Y defined by T (f, x) = f(x) is continuous).

Let F be a fixed family of functions. The compact-open topology2) in F is the
topology generated by the base consisting of all sets

{f ∈ F : f(A1) ⊂ U1} ∩ {f ∈ F : f(A2) ⊂ U2} ∩ . . . ∩ {f ∈ F : f(Am) ⊂ Um},

where Ai is a compact subset of I and Ui is an open subset of I, for i = 1, 2, . . . ,m.
The topology of uniform convergence in the space F will be denoted by TFu and

the compact-open topology by TFk . If F is a family of functions, then symbol Fu (Fk)
will stand for the space F with the topology TFu (TFk ). By BFu (f, ε) we will denote
an open ball in the space F with the metric ρu with centre at f and radius ε > 0.

In our considerations, one more topology in a space of functions will be useful (see
[18]). Corresponding to each open set U in I2, let FU = {f ∈ F : Gr(f) ⊂ U}. The
topology induced on F by a basis consisting of sets of the form FU for each open set
U in I × I is called the graph topology for F . In our case of functions mapping the
unit interval into itself one can note:

Statement 2.1 ([18]). The graph topology coincides with the compact-open topology.

In this paper we will consider different types of functions. One of them will be
Cesàro type functions which have been introduced in [24]. A function f : X → Y is of
Cesàro type iff there exist non-empty open sets U ⊂ X and V ⊂ Y , such that f−1(y)
is dense in U for each y ∈ V . Moreover, the Baire one functions i.e functions which are
the pointwise limit of a sequence of continuous functions will play an important role in
our considerations. Obviously, a Baire one function need not be continuous. However,
it can not be everywhere discontinuous. More specifically, a set of discontinuity points
of a Baire one function is a meager set ([6]).

2) Compact – open topology is commonly considered in the case of the family of continuous functions.
The paper [18] is the first one where the compact – open topology is refers to almost continuous
functions.
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The next type of functions considered by us will be Darboux functions. A real
valued function f defined on the interval I is said to be a Darboux function if it
has the intermediate value property i.e. if whenever x and y belong to I and α is
any number between f(x) and f(y), there is a number z between x and y such that
f(z) = α. This definition one can write in the following equivalent form: We say that
f is a Darboux function if f(C) is a connected set, for any connected set C ⊂ I.

In our case, the local characterization of a Darboux function (see [7, 15]) will be
very useful, so we shortly recall it.

Let us start with a left- and right-range of f at x0(denoted by R−(f, x0) and
R+(f, x0), respectively):

α ∈ R−(f, x0) iff
(
f−1(α) ∩ (x0 − δ, x0) 6= ∅

)
for any δ > 0,

α ∈ R+(f, x0) iff
(
f−1(α) ∩ (x0, x0 + δ) 6= ∅

)
for any δ > 0.

An element β is a left-hand (right-hand) cluster number of f at x0 if there exists an
increasing sequence {xn}n∈N (a decreasing sequence {yn}n∈N) tending to x0 such that
limn→∞ f(xn) = β (limn→∞ f(yn) = β). The set of all left-hand (right-hand) cluster
numbers of f at x0 will be denoted by L−(f, x0) (L+(f, x0)).

We will say that x0 is a left-hand (right-hand) Darboux point of f if for each
left-hand (right-hand) cluster number β of f at x0 different from f(x0) and each γ
belonging to the open interval with endpoints at f(x0) and β we have γ ∈ R−(f, x0)
(γ ∈ R+(f, x0)). Of course, if we have x0 = 0 or x0 = 1, then we consider only one-side
cluster numbers.

We shall say that x0 is a Daboux point of f if it is simultaneously a right-hand and
a left-hand Darboux point of f . Obviously, if x0 = 0 (x0 = 1), then x0 is a Darboux
point of f if x0 is right- (left-) hand Darboux point of f .

It is well known that f is a Darboux function iff every point x ∈ I is a Darboux
point of f ([7]).

Let f be a Darboux function. We will say that a point x0 is an almost fixed point
of f (denoted by x0 ∈ aFix(f)), if

x0 ∈ int
(
R−(f, x0)

)
∪ int

(
R+(f, x0)

)
.

Another class of functions that will be considered by us is a family of approximately
continuous functions, which are connected with the notion of density point. If A ⊂ R
is a Lebesgue measurable set and x0 ∈ R, then we say that a density (right density, left
density) of a set A at a point x0 is equal to α (αr, αl) if α = limh→0+

m(A∩[x0−h,x0+h])
2h

(αr = limh→0+
m(A∩[x0,x0+h])

h , αl = limh→0+
m(A∩[x0−h,x0])

h ). Moreover, if α = 1,
(αr = 1, αl = 1), then we say that x0 is a density (right density, left density) point of
A. The notion of approximately continuous function was introduced at the beginning
of the 20th century ([10]). A function f is approximately continuous if for each point
x ∈ I there exists a Lebesgue measurable set Ex such that x ∈ Ex, x is a density
point of Ex and f � Ex is continuous at x. Obviously, if x = 0 (x = 1), then x has
to be only a right (left) density point of the set Ex. Clearly, if x ∈ C(f), then f is
approximately continuous at the point x. It is well known that Ca ⊂ DB1 (e.g. [6]).
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Moreover f ∈ Ca iff for any a ∈ R the sets {x : f(x) < a} and {x : f(x) > a} belong
to the density topology ([28]).

We finish this section with some information about almost continuous functions,
which were introduced in the fifties by J. Stallings. We say that a function f is almost
continuous (in the sense of Stallings) if every open set U ⊂ I2 containing the graph
of f contains the graph of some continuous function.

The family of almost continuous functions has become an object of interest of
many mathematicians because it contains many important classes of functions e.g.
DB1 and thus also Ca and the family of all derivatives (a derivative is a function being
a derivative of some function). Moreover, with some additional simple assumptions
imposed on X, having a fixed point by all continuous functions (we say then that
X has the fixed point property) is equivalent to having a fixed point by all almost
continuous functions. We will formulate it as the following statement:

Statement 2.2 ([25]). If a nondegenerate Hausdorff space X has a fixed point prop-
erty, then each almost continuous function g : X → X has a fixed point.

We say that a function f is connectivity, if Gr(f � C) is a connected set, for each
connected set C contained in the domain of f . Of course, each connectivity function
is a Darboux function.

Statement 2.3 ([25]). Each almost continuous function is a connectivity function,
so it is also a Darboux function.

Now we will present some technical statements which will be used in the further
part of the paper. They will be formulated for a real valued function f defined on
some subset of I, although they are mostly true for the wider classes of spaces and
functions.

Statement 2.4 ([19]). Let an interval J ⊂ I be a union of countably many closed
intervals In such that int(In) ∩ int(Im) = ∅ for m 6= n and In ∩ In+1 6= ∅ for each
integer n. For any function f : J → R, f is almost continuous iff f � In is almost
continuous for each n.

Statement 2.5 ([13]). If a, b ∈ I and f : (a, b) → R is almost continuous,
y ∈ L+(f, a), z ∈ L−(f, b), then the functions f1 : [a, b) → R, f2 : (a, b] → R,
f3 : [a, b]→ R such that f1(x) = f2(x) = f3(x) = f(x) for x ∈ (a, b), f1(a) = f3(a) =
y and f2(b) = f3(b) = z are almost continuous.

Statement 2.6 ([20]). If f : I→ R is almost continuous and A is a subset of I, then
f � A is almost continuous.

Let us introduce one more notation. If F , K are families of real functions defined
on a topological space X, then the symbolMa(F ,K) will stand for maximal additive
class of F with respect to K, i.e.

Ma(F ,K) = {f ∈ F : f + g ∈ K for each g ∈ F}.

We shall writeMa(F) if K = F and call this family the maximal additive class of F .
Moreover, we shall denote the family {f ∈ F : max{f, g} ∈ K for all g ∈ F}
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({f ∈ F : min{f, g} ∈ K for all g ∈ F}) by Mmax(F ,K) (Mmin(F ,K)). If F = K,
then we shall writeMmax(F) andMmin(F). We have the following properties:

Statement 2.7 ([19]). Ma(A(R)) = C(R), C(R) ⊂ Mmin(A(R)) and C(R) ⊂
Mmax(A(R)).

Moreover, it is worth adding that the maximal classes for almost continuous func-
tions with respect to maximum and minimum were characterized in [16]:Mmin(A(R))
is the family of all Darboux lower semicontinuous functions andMmax(A(R)) is the
family of all Darboux upper semicontinuous functions.

Statement 2.8 ([25]). Let X,Y, Z be nondegenerate intervals. For each f ∈ A(X,Y )
and g ∈ C(Y, Z) the composed map g ◦ f is almost continuous.

Statement 2.9 ([12]). Let X,Y, Z be nondegenerate intervals. If h : X → Y is a
homeomorphism and f : Y → Z is almost continuous, then the composition f ◦ h is
almost continuous.

In hitherto considerations concerning entropy points, a special role was played by
fixed points of a function. However, in many situations it is advantageous to con-
sider points “close to fixed points” (in the sense that fixed points of the function lie
arbitrarily close to a given point, e.g. almost fixed points and Theorem 3.2 [22]). It
should be noted that the consideration of almost fixed points makes sense only for
discontinuous functions. The following definition of the pseudo-fixed point aims to
find a uniform approach to the idea of this type of points, in such a way that they
could be considered both for continuous, as well as discontinuous functions.

We say that a point x0 is a pseudo-fixed point of a function f (denoted by x0 ∈
pFix(f)) if every neighborhood of x0 (i.e. an open set containing x0) contains a fixed
point of f .

Using the properties of almost fixed points (see [22]) we get immediately that for
any f ∈ DB1 if x0 ∈ aFix(f), then x0 ∈ pFix(f). We can prove even more.

Lemma 2.10. If f ∈ A, then aFix(f) ⊂ pFix(f).

Proof. Let f ∈ A, x0 ∈ aFix(f) and ∆ = {(x, x) : x ∈ I}. Thus x0 ∈
int (R−(f, x0)) ∪ int (R+(f, x0)). Fix ε > 0 and assume, that x0 ∈ int (R−(f, x0))
(for x0 ∈ int (R+(f, x0)) the proof runs in the similar manner). There are two pos-
sibilities: x0 ∈ (0, 1) or x0 = 1. In both cases one can choose ε0 ∈ (0, ε) such
that (x0 − ε0, x0 + ε0) ∩ (0, 1] ⊂ R−(f, x0). Fix y ∈ (x0 − ε0, x0) ∩ (0, 1) and
z ∈ [x0, x0 + ε0) ∩ (0, 1]. Clearly, there exist s ∈ (y, x0) and t ∈ (s, x0) such that
f(s) = y < s and f(t) = z ≥ x0 > t. From Statement 2.3 it may be con-
cluded that Gr(f � [s, t]) ∩ ∆ 6= ∅. Since [s, t] ⊂ (x0 − ε, x0 + ε0), it follows that
Fix(f) ∩ (x0 − ε, x0 + ε0) 6= ∅. Thus x0 ∈ pFix(f).

It is easy to see that pFix(f) = Fix(f) for any continuous function f . For other
functions the equality can not be true. What is more:

Proposition 2.11. In the space Au the family Ω of all functions ξ from A such that
pFix(ξ) \ Fix(ξ) 6= ∅ is a dense set.
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Proof. To prove the theorem we have to show that:

BAu (ξ, δ) ∩ Ω 6= ∅ for any function ξ ∈ A and any δ > 0. (2.1)

Fix ξ ∈ A and δ > 0. Let x0 ∈ Fix(ξ). For the simplicity of considerations we assume
that x0 ∈ (0, 1) (the proof in the case x0 ∈ {0, 1} runs analogously). The following
two cases are possible:

1. x0 ∈ C(ξ), so there exists σ > 0 such that [x0 − σ, x0 + σ] ⊂ (0, 1) and ξ([x0 − σ,
x0 + σ]) ⊂ (x0 − δ

3 , x0 + δ
3 ). Putting cn = x0 + σ

2n for n ∈ N we obtain that
limn→∞ cn = x0 and cn ∈ (x0, x0 + σ) for n ∈ N. We define the function η : I→ I
in the following way: η(x) = ξ(x) for x ∈ [0, x0 − σ] ∪ [x0 + σ, 1], η(x0) = x0 + δ

8 ,
η(c2k−1) = x0+ δ

4 , η(c2k) = x0− δ
4 for k ∈ N and η is linear on intervals [x0−σ, x0],

[c1, x0 + σ], [c2k+1, c2k] and [c2k, c2k−1] for k ∈ N. From Statements 2.5 and 2.4 it
may be concluded that η ∈ A. Moreover, it is obvious that x0 ∈ pFix(η) \ Fix(η).
According to the definition of η we obtain that η ∈ BAu (ξ, δ) ∩ Ω.

2. x0 6∈ C(ξ). For simplicity of the notation, we assume that x0 is a right-discontinuity
point of ξ (if x0 is a left-discontinuity point of ξ, the proof runs in the similar way).
Obviously, x0 is a right-hand Darboux point of ξ. Thus there exists β ∈ L+(ξ, x0)
such that 0 < |β − ξ(x0)| < δ. There is no loss of generality in assuming that
β > ξ(x0). Put µ = β−ξ(x0)

2 . Now, we define the function ν : I → I as follows:
ν(x) = min{ξ(x)+µ, 1} for x ∈ [0, x0] and ν(x) = max{ξ(x)− µ

2 , 0} for x ∈ (x0, 1].
Statements 2.5, 2.6, 2.4 and 2.7 imply that ν ∈ A. Moreover,

x0 ∈ pFix(ν) \ Fix(ν). (2.2)

Indeed, obviously ν(x0) = ξ(x0) + µ = x0 + µ 6= x0, so x0 6∈ Fix(ν). Furthermore,
if y ∈ (max{0, x0− µ

4 }, x0 + µ
2 ), then it is easy to see that ξ(x0) < y+ µ

2 < β. Thus
y+µ

2 ∈ R
+(ξ, x0). Let σ > 0. There exists xσ ∈ (x0, x0+σ) such that ξ(xσ) = y+µ

2 .
Clearly, ξ(xσ) − µ

2 = y > 0, so ν(xσ) = y. It means that y ∈ R+(ν, x0). Since y
was arbitrary, we obtain that (max{0, x0 − µ

4 }, x0 + µ
2 ) ⊂ int(R+(ν, x0)) and, in

consequence, x0 ∈ aFix(ν). Hence, by Lemma 2.10, we obtain (2.2).
Obviously, ν ∈ BAu (ξ, δ). Therefore BAu (ξ, δ) ∩ Ω 6= ∅.

By making certain modifications in the above proof we can show that Proposi-
tion 2.11 is also true for the classes DB1 and Ca.

3. MAIN RESULTS

Existing papers concerning the approximation of functions (both continuous as well
as discontinuous) by functions having an entropy point, observe that they are strictly
connected with fixed points of functions (or with points in some sense “close” to fixed
points) and they deal with entropy points for which entropy is “close to infinity”.
These facts have prompted us to distinguish so called ∞-entropy points.

For completness of explanation, we now recall the definition of bundle-entropy,
modelling on the Bowen-Dinaburg version of the definition of entropy.
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Let f be a function, L be a family of pairwise disjoint (nonsingletons) continuums
in I and J ⊂ I be a connected set such that J ⊂ f(A) for any A ∈ L. A pair
Bf = (L, J) is called an f -bundle and J is said to be a fibre of bundle. Moreover,
if we additionally assume that A ⊂ J for all A ∈ L, then such an f -bundle will be
called an f -bundle with dominating fibre.

Let ε > 0, n ∈ N, Bf = (L, J) be an f -bundle and M ⊂
⋃
L. We shall say that

M is (Bf , n, ε)-separated if for each x, y ∈M , x 6= y one can find i ∈ {0, 1, . . . , n− 1}
such that f i(x), f i(y) ∈ J and |f i(x)− f i(y)| > ε.

Moreover, we put

maxsep[Bf , n, ε] = max{card(M) :M ⊂ [0, 1] is (Bf , n, ε)-separated set}.

The entropy of an f -bundle Bf is the number

h(Bf ) = lim
ε→0

lim sup
n→∞

[
1

n
log (maxsep[Bf , n, ε])

]
.

For our consideration it is important to note:

Statement 3.1 ([23]). Let f be an arbitrary function and Bf = (L, J) be an
f -bundle with dominating fibre. Then h(Bf ) ≥ log(card(L)) whenever L is finite
and h(Bf ) = +∞ whenever L is infinite.

We shall say that a sequence of f -bundles Bkf = (Lk, Jk) converges to a point
x0, if for any ε > 0 there exists k0 ∈ N such that

⋃
Lk ⊂ (x0 − ε, x0 + ε) and

(f(x0)− ε, f(x0) + ε) ∩ Jk 6= ∅ for any k ≥ k0.
Putting

Ef (x) =
{

lim sup
n→∞

h(Bnf ) : Bnf −→
n→∞

x
}

we obtain a multifunction Ef : I( R ∪ {+∞}.
In [23], the basic properties of a multifunction Ef were examined. It allows us to

adopt the following definition.
We shall say that a point x0 is an ∞-entropy point of f if ∞ ∈ Ef (x0) and

x0 ∈ pFix(f). The set of all∞-entropy points of f will be denoted by e(f). Obviously,
we have that each ∞-entropy point of f is also an entropy point of f , in the sense of
the definition assumed in [23]. Moreover, we say that a nonempty family of functions
F has the ∞-entropy point property if

⋂
f∈F e(f) 6= ∅.

In existing papers concerning the issue of approximations, single functions having
entropy points were being searched for in the neighborhood of a fixed function. Obser-
vation of concrete examples shows that “arbitrarily close” to any function it is possible
to find a “big” set of functions having entropy points. However, the description of these
observations is hindered by the following, easy to prove, facts.

Proposition 3.2.

(a) In the space Cu there is no nonempty open set having the ∞-entropy point prop-
erty.
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(b) In the space Fk, where F ∈ {A,DB1, Ca} there is no nonempty open set having
the ∞-entropy point property. �

The next theorem shows that if we consider a topology of uniform convergence
in A, then there exists an open set with the ∞-entropy point property.

Problems analyzed in the next theorem could be formulated in the language of
bitopological spaces (information about such spaces one can find for example in [14]).
In order to avoid overly complicated notations in the next theorem we use the methods
of these spaces without going into their structure.

Theorem 3.3. Let F ,K ∈ {A,DB1, Ca} be families of functions such that K ⊂ F .
Then for any nonempty, TFk -open set U there exists BKu (φ, δ0) ⊂ U such that
BKu (φ, δ0) has the ∞-entropy points property. Moreover, if H ∈ {DB1, Ca} and
H  K, then we can additionally demand that BKu (φ, δ0) ∩H = ∅.

Proof. We first assume that F = A. Let U ∈ TAk \ {∅} be a basis set in TAk and
ζ ∈ U . Statement 2.1 implies that there exists an open set WU ⊂ I2, such that
U = {f ∈ A : Gr(f) ⊂WU}. Then one can choose a continuous function ψ such that

ψ ∈ U and Fix(ψ) ∩ (0, 1) 6= ∅.

Indeed, since ζ ∈ A, so we obtain that there is a continuous function ψ0 such that
ψ0 ∈ U . If Fix(ψ0) ∩ (0, 1) 6= ∅, then simply put ψ = ψ0. Otherwise, ∅ 6= Fix(ψ0) ⊂
{0, 1}. If 1 ∈ Fix(ψ0), then there exists w ∈ (0, 1) such that [w, 1] × [w, 1] ⊂ WU .
Clearly, there exists v∗ ∈ (w, 1) such that ψ0(v∗) ∈ [w, 1]. Fix v ∈ (v∗, 1) and define
ψ as follows: ψ(x) = ψ0(x) for x ∈ [0, v∗], ψ(x) = x for x ∈ [v, 1] and ψ is linear on
[v∗, v]. Obviously, ψ has the required property. If Fix(ψ0) ⊂ {0}, we construct the
function ψ in a similar way.

Put
Z = I2 \WU .

It is sufficient to consider the case Z 6= ∅. Let d : I2 → I be the function defined in
the following way: d((x, y)) = d2((x, y), Z) for (x, y) ∈ I2, where d2((x, y), Z) denotes
the distance between the point (x, y) and the set Z. Obviously, d is a continuous
function and Gr(ψ) is a compact set. Therefore

ε0 = inf{d((x, y)) : (x, y) ∈ Gr(ψ)} > 0

and consequently

d2((z1, z2),Gr(ψ)) ≥ ε0 for any (z1, z2) ∈ Z. (3.1)

Now, we show that
BAu (ψ, ε0) ⊂ U. (3.2)

Let g ∈ BAu (ψ, ε0). We first prove that

(x, g(x)) 6∈ Z for x ∈ I. (3.3)
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So, let x ∈ I. Obviously, d2((x, g(x)),Gr(ψ)) ≤ ρ2((x, g(x)), (x, ψ(x))) < ε0 (where ρ2
is the Euclidean metric in I2). This, together with (3.1) gives (3.3) and, in consequence,
we have that (x, g(x)) ∈WU . From the arbitrariness of x, we obtain that Gr(g) ⊂WU ,
so g ∈ U , and the proof of (3.2) is complete.

Now, let x0 ∈ Fix(ψ) ∩ (0, 1). Since ψ is continuous, so one can find δ ∈ (0, ε04 )
such that [x0 − δ, x0 + δ] ⊂ (0, 1) and

ψ([x0 − δ, x0 + δ]) ⊂
(
x0 −

ε0
8
, x0 +

ε0
8

)
. (3.4)

Then
P = [x0 − δ, x0 + δ]× [x0 − δ, x0 + δ] ⊂WU . (3.5)

Indeed, let t0 = (t1, t2) ∈ P . Obviously, t2 ∈ (x0 − ε0
4 , x0 + ε0

4 ). Moreover, from (3.4)
we infer that d2(t0,Gr(ψ)) ≤ |t2 − ψ(t1)| < ε0. From this and (3.1) we conclude that
t0 6∈ Z, so t0 ∈WU , and (3.5) is proved.

Now, we construct a function φ : I→ I for K = A.
Let h : I → [x0 − δ

2 , x0 + δ
2 ] and π : [x0, x0 + δ

4 ] → I be homeomorphisms such
that h(0) = x0 − δ

2 and π(x0) = 0. Moreover, let φ1 : I → I be the function defined
by φ1(x) = lim supm→∞

a1+...+am
m , where an for n ∈ N are given by the unique

nonterminating binary expansion of the number x = (0.a1, a2, . . .)2. Then φ1 (called
the Cesàro-Vietoris function) is an almost continuous function of Cesàro type, φ1(J) =
I for any nonempty open set J ⊂ I and φ1(0) = 0 (see [5, 20]).

Next, we define φ∗ : [x0, x0 + δ
4 ] → [x0 − δ

2 , x0 + δ
2 ] to be φ∗ = h ◦ φ1 ◦ π. From

Statements 2.8 and 2.9, we conclude that φ∗ ∈ A. Furthermore, it is easy to check
that φ∗ is of Cesàro type.

Finally, we can afford to give the definition of the function φ in the following way:
φ(x) = ψ(x) for x ∈ [0, x0] ∪ [x0 + δ

2 , 1], φ(x) = φ∗(x) for x ∈ (x0, x0 + δ
4 ] and φ is

linear on [x0 + δ
4 , x0 + δ

2 ]. Statements 2.6, 2.5 and 2.4 imply that φ ∈ A. Moreover, it
is clear that ρu(ψ, φ) < ε0

2 .
Now, we construct a function φ : I→ I for K = DB1.
Let {[an, bn]}n∈N be a sequence of closed intervals such that x0 < . . . < an <

bn < . . . < b2 < a1 < b1 < x0 + δ
6 , limn→∞ bn = x0 and the right density of sets⋃∞

i=1[a2i, b2i] and
⋃∞
i=0[a2i+1, b2i+1] at the point x0 is greater than 0.

We define the function φ as follows: φ(x) = ψ(x) for x ∈ [0, x0] ∪ [x0 + δ, 1],
φ(x) = x0 − δ

2 for x ∈
⋃∞
i=1[a2i, b2i], φ(x) = x0 + δ

2 for x ∈
⋃∞
i=0[a2i+1, b2i+1] and φ

is linear on each interval [bn+1, an] (for n ∈ N) and [b1, x0 + δ]. It is easy to see that
φ ∈ DB1 and ρu(ψ, φ) < ε0

2 .
Now, we construct a function φ : I→ I for K = Ca.
As in the previous case, let us consider a sequence {[cn, dn]}n∈N of closed intervals

such that x0 < . . . < cn < dn < . . . < d2 < c1 < d1 = x0 + δ
6 and limn→∞ dn =

x0. However, in this case we will require that x0 is a right density point of the set⋃∞
i=1[ci, di].
Consider the function φ defined in the following way: φ(x) = ψ(x) for x ∈ [0, x0]∪

[x0+δ, 1], φ(x) = x0 for x ∈
⋃∞
i=1[ci, di], φ is linear on [d1, x0+δ] and φ is a continuous

function on [dn+1, cn] and φ([dn+1, cn]) = [x0 − δ
2 , x0 + δ

2 ] for each n ∈ N. Obviously,
φ ∈ Ca and ρu(ψ, φ) < ε0

2 .
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For all cases discussed above put δ0 = δ
6 . Obviously, if K ∈ {A,DB1, Ca} and

f ∈ BKu (φ, δ0), then f ∈ A and ρu(f, ψ) < ε0. From this inequality and (3.2) we
conclude that

BKu (φ, δ0) ⊂ U. (3.6)

Now, we show that
BKu (φ, δ0) ∩H = ∅, (3.7)

for any K ∈ {A,DB1, Ca} and each H ∈ {DB1, Ca} such that H  K.
If K = A, then[

x0 −
δ

3
, x0 +

δ

3

]
⊂ ξ(V ) for any ξ ∈ BAu (φ, δ0) and any nonempty

open set V ⊂
[
x0, x0 +

δ

4

]
. (3.8)

Indeed, let ξ ∈ BAu (φ, δ0) and V ⊂ [x0, x0 + δ
4 ] be a nonempty open set. Obviously,

there exists an open interval V1 ⊂ V . According to properties of φ1 one can conclude
that φ(V1) = [x0 − δ

2 , x0 + δ
2 ], so x0 − δ

3 , x0 + δ
3 ∈ ξ(V1). As ξ is a Darboux function

we obtain (3.8). Hence, we obtain immediately that ξ is not Baire one function and,
in consequence, we have (3.7).

If K = DB1, then it is easily seen that any function ξ from BDB1
u (φ, δ0) is not

approximately continuous. Thus (3.7) is true if K = DB1.
The proof in the case F = A will be completed if we show that BKu (φ, δ0) has

the ∞-entropy point property for any K ∈ {A,DB1, Ca}. For this purpose, fix η ∈
BKu (φ, δ0).

Assume first that K = A. If r ∈ (0, δ4 ), then we conclude from (3.8) that x0 − δ
3 ,

x0 + δ
3 ∈ η([x0, x0 + r)). Moreover, Statement 2.3 implies that η is a connectivity

function. Thus Fix(η) ∩ [x0, x0 + r) 6= ∅ and, as a consequence, we have that x0 ∈
pFix(η).

Consider a sequence {[sn, tn]}n∈N of intervals such that x0 < . . . < sn < tn <
. . . < t2 < s1 < t1 < x0 + δ

4 and limn→∞ tn = x0. From (3.8) we see that [x0 −
δ
3 , x0 + δ

3 ] ⊂ η([sn, tn]) for n ∈ N. Putting J = [x0− δ
3 , x0 + δ

3 ] and Wn = {[si, ti] : i =
n, n + 1, . . .} for n ∈ N we obtain that {Bnη }n∈N, where Bnη = (Wn, J), is a sequence
of η-bundles with dominating fibre converging to the point x0. Statement 3.1 implies
that h(Bnη ) = +∞, so +∞ ∈ Eη(x0). Finally, we get that x0 ∈ e(η). Since η was
arbitrary, so BAu (φ, δ0) has the ∞-entropy point property.

Now, assume that K = Ca. Since ρu(η, φ) < δ
6 and η is a Darboux function, we

obtain immediately that [x0− δ
6 , x0+ δ

6 ] ⊂ η([dn+1, cn]) for n ∈ N . Thus [x0− δ
6 , x0+ δ

6 ]
⊂ R+(η, x0), so x0 ∈ aFix(η). From Lemma 2.10 we conclude that x0 ∈ pFix(η). If
we put J = [x0− δ

6 , x0 + δ
6 ], Vn = {[di+1, ci] : i = n, n+ 1, . . .} and Bnη = (Vn, J), then

{Bnη }n∈N is a sequence of η-bundles with dominating fibre converging to the point
x0. Thus, by Statement 3.1, h(Bnη ) = +∞. Hence +∞ ∈ Eη(x0) and, in consequence,
x0 ∈ e(η). Since η was arbitrary, so BCau (φ, δ0) has the ∞-entropy point property.

Analysis similar to the above shows that BDB1
u (φ, δ0) has the ∞-entropy point

property.
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Consider finally the situation when F ∈ {DB1, Ca} and K ⊂ F . Let U1 ∈ TFk \{∅}
be a basis set in TFk . From Statement 2.1 we obtain that there exists an open set
WU1 ⊂ I2 such that

U1 = {f ∈ F : Gr(f) ⊂WU1
}.

Putting U = {f ∈ A : Gr(f) ⊂ WU1} we obtain that U ∈ TAk \ {∅}. Clearly, F ⊂ A.
From what has already been proved, it may be concluded that there exist φ ∈ K and
δ0 > 0 such that BKu (φ, δ0) has the ∞-entropy point property, BKu (φ, δ0) ⊂ U and
BKu (φ, δ0) ∩H = ∅ whenever H ∈ {DB1, Ca} and H  K.

It is easy to see that BKu (φ, δ0) ⊂ U1, and the proof is complete.
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