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1. INTRODUCTION

In this paper, we study the following nonlinear anisotropic discrete problem with
heteroclinic condition at the boundary

—Aa(k — 1, Au(k — 1)) + a(k)g(k, u(k)) = 6(k) f (k, u(k)), k€ Z*,
u(©) =0, lim u(k)=-1, lim u(k)=1, (1.1)

k——+oo

where Au(k) = u(k+1)—u(k) is the forward difference operator, Z* := {k € Z : k # 0}
and a, a, 4, f, g are functions to be defined later.

Difference equations can be seen as a discrete counterpart of PDEs and are usually
studied in connection with numerical analysis. In this way, the main operator in
Problem (1.1)

—A(a(k — 1, Au(k — 1)))

can be seen as a discrete counterpart of the anisotropic operator
N
> gl )
— alx, —u).
=1 Bxl ’ aitz
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Note that anisotropic PDEs with as main operators, the operator above was studied
by many authors under Leray-Lions type conditions (see [6]) in the context of variable
exponents (see [3,5,7,9-11]). Therefore, the problem (1.1) can be seen as a discrete
counterpart of such PDEs under nonhomogeneous Dirichlet boundary conditions.

We adapt in this paper the classical minimization methods used for the study of
anisotropic PDEs to prove the existence of solution of problem (1.1). Note that we
examine anisotropic difference equations on unbounded discrete interval, typically, on
the whole set Z, with asymptotic conditions of heteroclinic type. The first study in
that direction for constant exponents was done by Cabada et al. [2] and for variable
exponent by Mihailescu et al. [8] (see also [4]). In [4], the authors studied the following
problem:

—Aa(k — 1, Au(k — 1)) + |u(k) PP 2u(k) = f(k), k< Z,
lim wu(k) = 0.

|k|—o0

(1.2)

They proved an existence result of weak homoclinic solution of (1.2).

In this paper, we prove an existence result of (1.1) and for that, we define other
new spaces and new associated norms compared to that of [4]. Some of the norms
defined may be equivalent in order to prove the main result of this paper. Note also
that in our study, we show some competition phenomena between «(-) and §(-). Such
competition phenomena are also necessary for the proof of the existence of weak
heteroclinic solution of (1.1).

The study of heteroclinic connections for boundary value problems has had a
certain impulse in recent years, motivated by applications in various biological, phys-
ical and chemical models, such has phase-transition, physical processes in which the
variable transits from an unstable equilibrium to a stable one, or front-propagation in
reaction-diffusion equations. Indeed, heteroclinic solutions are often called transitional
solutions.

The paper is organized as follows. Section 2 is devoted to the mathematical pre-
liminary. In Section 3, we study problem (1.1), therefore, we prove the existence of
weak heteroclinic solutions of (1.1).

2. AUXILIARY RESULTS

We set Z, = {ke€Z:k<0},Zf ={keZ:k>0}, 72 :={ke€Z:k<0} and
Zt :={k € Z: k > 0}. For the data f, o and a, we assume the following.

(H1) a(k,-):R = R, k € Z, and there exists a mapping A : Z xR — R which satisfies
a(k,§&) = a%A(lmf) for all k € Z and A(k,0) =0 for all k € Z.

(Hs) p: Z — (1,400) with 1 < p~ < pt < +oo, where pt := sup,cz p(k) and
p~ = infrez p(k).

(Hs) 1€]"™ < a(k,€)¢ < p(k)A(k,€) for all k € Z and ¢ € R.

(H4) there exists C7 > 0 such that for all £ € Z and £ € R we have |a(k,&)| <

C1(j(k) + |€[P® 1) with j € IP'0), where ﬁ + ﬁ =1
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(Hs) (a(k,&) —a(k,n)).(§—n) >0 forall k € Z and £,n € R such that £ # 1.
(Hg) f:Z xR — R and there exists Cy > 0 such that

(kO] < Co(L+ |t = 1P )xgr + Co(1+ [+ 1P )y,
forall k € Z, t € R, where xa(k) =1if k € A and xa(k) =01if k ¢ A.

This assumption implies that

|f(k,t+1)] < Co(L+ [tPW=1) if k>0,
|f(k,t —1)] < Co(L+ [tP=Y) if k<0,

so by denoting

t
/fk:TdT for ke€Z,teR,
0

we deduce that there exists a positive constant C > 1 such that

(1 4+ [t]p®)y if k>0,

|F(k,t+ 1) <C:
| < CHA+ PR if k<.

\F(k,t—1)

lO\ N)\

(H7) a:Z — R and § : Z — R are such that a(k) > ap > 0 for all k € Z,

0<d(k)<d=sup|é(k)| < +oo and el := {u 7 —R; Z\u |<—|—oo}
kEZ kEZ
(Hs) ag > op*Cy.
(Ho) gl t) = |t = 1P 7% (¢ = 1) xzo (k) + [t + 1PN 72 (£ + 1) xz- (R).
Remark 2.1. The condition ag > 5p+C§ on the data means that the parameter

a(-) should be bigger than the parameter §. This condition is called competition
phenomena between «(-) and ().

In order to present the main result, for each p(-) : Z — (1, +00), we introduce the
following spaces:

[ = {u :Z — Rysup Ju(k)| < oo},

k€EZ
lp() { :Z — R; u(0) = 0 and py.y(u Z|u |pk)<+oo}
kEZ
lp() {u Z — R; u(0) = 0 and p,, (y(u) := Z lu(k)|P*) < +oo}
kezt
lp() { 1 Z — R; u(0) = 0and p,_(u) := Z lu(k)[P*) < +oo}

keZ~
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lg’(('l)(_) = {u 1 Z — R; u(0) =0 and pu .y p()(u) := Za(k)|u(k)|p(k) < —1-00}7
keZ

lﬁf—ﬁ,a() {u 12— R; u(0) =0 and pu(yp, () (u) = Z a(k)|u(k)[P®) < _1_00},
keZ+

ng () {u 22— R; uw(0) =0 and py(y,p_ () (u) = Z a(k)u(k)[P®) < +oo},
keZ—

Wol) = {u L2 R; u(0) = 0 and py gy 0 (1) = > a(k)[u(k)[P®
kEZ

+ Z |Au(k)|P*) < +oo}
kEZ

WO = {u L2 = Ryu(0) = 0 and py oy, o (w) == > alk)u(k)P®)
keZ+t

+ Z |Au(k)|P*) < +oo}

keZ+

{u Z—>Ruel”(

Orta()? Au(k) € lgf_g and u(0) = O},

and

Wo ) = {“ $Z = R;u(0) = 0 and pra(),p, () () = D alk)uk)P®
keZ—

+ Z |Au(k)|P®) < +oo}

keZ—

{u Z—R;ue lg(_ () Aulk) € lg,('_) and u(0) = 0}.

On lg( 7 and If p() we introduce the Luxemburg norms

0,4,a(-)
p(k)
<1,

u(k) P < 1}

) A
lulla0: ) = ellaype ) + 180l

u(k)

A

ullp, () = inf {)\ >0; )

kezt

||u||a(‘)7p+(,) = inf {)\ > 0; Z ak

kezZ+

and we deduce that

is a norm on the space whrt We replace Z1 by Z~ to get the norms on lgf'_),

0+a()
lgf;) of- and W073(,a( )
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Remark 2.2.
) O] ) () 1,p(-) 1 () ,
)lg+a() lga(), l(’)’ﬁ() Zga(), WOioz( DWp andea()DWO

Indeed, a(k)|u(k)[P*®) is nonnegative for all k € Z. Therefore, if
ez a(k)|u(k)[P®) < +oo, then 3=, ;0 alk)|u(k)P®) < +o0.

2) Since for every k € Z, a(k,-) is a gradient and is monotone, then the primitive
A(k,-) of a(k,-) is necessarily convex.

3) As an example of functions which satisfy the assumptions (Hy)—(Hs), we can give
the following:
a) A(k,&) = ﬁ €™ where a(k, €) = |€P*F) 72 ¢ for all k € Z and £ € R.

p(k)/ (v(k)-2)/
b) A(k,€) = [(1 + e c 1}, where a(k,€) = (1+[¢[*) 7 ¢ for

all k€ Z and £ € R.
As in [4], we can prove the following results.

Lemma 2.3. Under assumption (H3), we have:

a) Pa<>’p+<>(“+v) < 2 (Do) () (W) F Pa)p, () (V) for all w,v €158

)foruelo+a(), if A>1, then

Pa()ps () (W) S Na()pe () (W) SN pa()py () (1)
+
< Pal)ps () (AU) S A Py py (o (1)
and if 0 < A < 1, then

. .
AP pa() e () (W) < Payp() (Au) <A pai)p, (1)
< Ma() o4 () (W) < pa()py () (1),

c) for every fived u € l0 +a() \{0} Pa(-),pi(-)(Au) is continuous convex even function
in A\, and it increases strictly when X\ € [0, 00).

Proposition 2.4. Let u € ZO Loy \{O}. Then

u
lullacypicy =7 & Pa<->,p+<-><;) =1

Proposition 2.5. Ifu € lp( ) () ond pT < +oo, then the following properties hold:
D Nullaeypey <=1 > 1) & pag)py (1) < L= 1> 1)
2) [lullaeyprcy > 1= Mullly ) S P (@) S Nl . o

)

)

p+
3) lullagypsy <1= ||uHa(.),p+(.) < Pa() () (1) < ||u||a()p+( )
4) Nullacyps) = 0 pagypy()(u) = 0.
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Proposition 2.6. Let u € W 7-11:(02() \ {0}. Then

U
lullia()pec) =a < Pl,a<'>,p+<-)(g) =1L
Proposition 2.7. Ifu € Wol’i(;j(_) and pt < 400, then the following properties hold:
D luliae)pee <=L >1) & prae) e (@) <1(=1> 1)
2) llullaeyor ey > 1= 11ullf oy po ) S PraCps () (1) <

)

+

3) Nullvaypr ) < 1= Nullf 0y ps ) < PLac)pe () (@) <
4) Nlulltae)ps() = 09 PLa()pi () (W) = 0.

We also have the following lemma (see [4]).

D:p+()?
')’p+(~)’

Lemma 2.8 (Holder type inequality). Let u € lg(Jr) () and v € Zg(ﬁ () such that
=1 for all k € Z. Then

1
3 el < (o= + =) oI looras 0

1 1
m 1w

kezZ+
Remark 2.9. The properties above also hold for the spaces l0 () lp o) and
Lp(-)
}xb:;aty

3. EXISTENCE OF WEAK HETEROCLINIC SOLUTIONS

In this section, we study the existence of weak heteroclinic solutions of (1.1) where §
is a positive function.

Definition 3.1. A weak heteroclinic solution of (1.1) is a function u € W, ’p(

that

() such

> a(k—1,Au(k = 1)Av(k — 1) + > a(k)g(k, u(k))v(k)

keZ keZ

= " 5(k) f(k,u(k))v(k)

kEZ

(3.1)

for any v : Z — R, with u(0) = 0, limg_,_ oo u(k) = —1 and limg_, 4o u(k) = 1.
We have the following result.

Theorem 3.2. Assume that (Hy)—(Hg) hold. Then, there exists at least one weak
heteroclinic solution of (1.1).

To prove Theorem 3.2, we first consider that the following problem:
—Aa(k — 1, Au(k = 1)) + a(k) Ju(k)["Y  u(k) = 6(k) f(k, u(k) + 1),k € Zt,
(3.2)
w(0) =0, limg_ 400 u(k) =0,
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admits at least a weak solution in the following sense.

Definition 3.3. A weak solution of (3.2) is a function u € W’ Lp0) satisfying

0,+,c(-)
400 +o00
> alk — 1, Au(k — 1) Av(k = 1) + Y alk) |u(k)[" 7 ulk)o(k)
k=1 k=1
(3.3)
= Za )+ Dw(k),

for any v € Woﬁ(o)z()

Theorem 3.4. Assume that (Hy)—(Hg) hold. Then, there exists at least one weak
solution of (3.2).

To prove Theorem 3.4, we first consider some auxiliary results.
The energy functional corresponding to problem (3.2) is defined by J: Wé i(a( )—>R
such that

'S S~ alk)
:ZA(kfl,Au(kfl))+Zm| 25 k)+1). (3.4)
k=1 k=1

We first present some basic properties of J.

Proposition 3.5. The functional J is well-defined on WOia() and is of class
ctow, L2() R) with the derivative given by

0,+,a()’
+oo

(J'(w),v) = a(k — 1, Au(k — 1)) Av(k — 1)
k=1

(3.5)

+Z (k)P =2y 25 k) + Dv(k)

for all u,v € W, i(o)(( )

Proof. Let J(u) = I(u) + L(u) — A(u) with

“+o0
Z -3 a(k) p

and
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Then, by (Hy), we get

+00 too
I(w)| = YAk —1,Au(k —1))| <> [A(k — 1, Au(k — 1))
k=1 k=1

<+§c ('(k—1)+1A (k-1)|P<k1>1>A (k—1)]
= pl—1) " ’

+00 too
<Y Cujtk = D)Au(k — 1]+ p(kci 5 |Au(k — 1)[P*D < oo,
k=1 k=1

By (H3) and (Hy), we obtain

“+oo
> Sl
k=1

Owing to (Hg), we deduce that

[ L(u)| =

<

IA(u)| =

“+o0
> 6(k)F(k,u(k) +1)| <
k=1

400 +o00 400
<3 cylsh)] (1 n u<k>|p<k>) < 16 + b S 18R k) P®) < oo,
k=1 k=1 k=0

Therefore, J is well-defined. Clearly I, L and A are in Cl(Wé’i(Z(.),]R). In what
follows, we prove (3.5). Let us choose u,v € Wé’i(g(.). We have

I(u+nv) — I(u) L(u+ nv) — L(u)

(I'(u),v) = lim , (L'(u),v) = lim

n—0t n 0+ "
and \ N
(N (u),0) = lim En) = A
n—0+ n
Since
lim I(u+nv) — I(u)
n—0+ n
— lim io A(k =1, Au(k — 1) + nAv(k — 1) = A(k — 1, Au(k — 1))
n—0% k=1 n
NS gy Ak =L Au(k = 1) + gAv(k = 1)) = Ak~ 1, Au(k ~ 1)
kzln—>0+ n
+o00



Weak heteroclinic solutions and competition phenomena. . . 741

according to (Hy),

L) L) S k) (uk) + (k)P — ()
n—0+ n n—0+ — p(k>77

we obtain (3.5). O
Lemma 3.6. The functional I is weakly lower semi-continuous.

Proof. From (H;) and (Hs), I is convex with respect to the second variable. Thus,
it is enough to show that I is lower semi-continuous (see Corollary IIL.8 in [1]). For

this, we fix u € Wé’f_(g(,) and € > 0. Since [ is convex, we deduce that
I(v) 2 I(u) + <f'( ), v — u)

+Z k—1,Au(k —1)) (Av(k — 1) — Au(k — 1))

1 _
> I(u) - c(p—_ =l 1A= )l .

where g(k) = j(k— 1)+ |Au(k — 1)|p(k71)71

> I(u) K(nu ol + 1A — v>||p+<.))
> I(u) — 99 ()
> I(u) —

for all v € W, ’p () with |lu — Jps () < & = . Hence, we conclude that I is
weakly lower Seml-contlnuous O
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Proposition 3.7. The functional J is bounded from below, coercive and weakly lower
semi-continuous.

Proof. By Lemma 3.6, since I is weakly lower semi-continuous, J is weakly lower
semi-continuous. We will only prove the coerciveness of the energy functional since
the boundedness from below of J arises from its coercivity. To prove the coerciveness
of J, we may assume that [|ull; o) ,, ) > 1. According to (Hz), (H3), (He) and (Hz),
we have

+oo

}:A k—1,Au(k—1) +§: P —> " 5(k) F(k, u(k) + 1)

k=1

_z 5 lBut >|P<k-”+zj’,j (R - Zw B+ 1)

+

1

zpjk |Au(k — PEY 4 +Z (k) [P+ — Zczw
1
fZCQM ) u(k
1 Ch =X
k

Z 27 () (AW + pag)pi (o ( Z (k)[P*) — M

1 5Ch

Z 2FPLa0)p () = L Pa()p () () = M

> (e - 55’)m<>,p+< () -1
= (pl‘F 602) 1 () ()

(u) = 400, ie. J is

Therefore, by assumption (Hg), as |
coercive and so, there exists ¢ € R such that J(u) > c.
If Hu||17a(.),p+(.) <1, then

1 6C}
JW) 2 Zprac) (@) = afjpam,m-)(u) -M
5CY
2 = Epa(a) (W) = M 2 =M > —oo.
Thus, J is bounded from below. O

We can now give the proof of Theorem 3.4.

Proof of Theorem 8.4. By Proposition 3.7, J has a minimizer which is a weak solution
of (3.2). In order to complete the proof of Theorem 3.4, we will show that every weak
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solution u is homoclinic, i.e u(k) — 0 as k — +00. Let u be a weak solution of problem

(3.2). Then, as u € W, 7.1;(02() we get

+
8

+oo
Zadu(k)\p(k) < (k) |u(k)|P®) < 4o0.
k=1

=
Il
—

Let Sy ={k€Z:|u(k)| <1} and So ={k € Z: |u(k)] > 1}. Sz is a finite set, then

Z|u |pk)—2|u +Z\u |p(k)<2\u )[P®) + R < +oo.

kES) k€S2 k€S,
As a consequence,
Z|u( R<Z|u )IPE) + R.
keSy keSy
Therefore, as Sy is a finite set, we get

“+oo

S luk)P" < +e.

k=1
Thus, limg_ 4 |u(k)| = 0, which completes the proof. O

Now, we consider the following problem:

—Aa(k — 1, Au(k — 1)) + a(k) [u(k) PP "2 ulk) = 6(k) f(k,u(k) - 1), k€ Z,

(3.6)
u(0) =0, limg_oou(k)=0.
A weak solution of problem (3.6) is defined as follows.
Definition 3.8. A weak solution of (3.6) is a function u € W&’f('o)é(.) such that
0 0
S alk—1,Au(k - 1)) Av(k— 1)+ > alk) [ulk) " uk)v(k)
k=—oc0 k=—o0 <37)
Z O(k) f (k, uk) = 1)v (k)
k=—oc0

for any v € W a( )
By mimickmg the proof of Theorem 3.4, we prove the following result.

Theorem 3.9. Assume that (Hy)—(Hg) hold. Then, there exists at least one weak
solution of (3.6).
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Now, let us show the existence of weak heteroclinic solutions of problem (1.1).

Proof of Theorem 3.2. We define v; = u; + 1, where wu; is a weak solution of problem
(3.2) and vy = wus — 1, where uy is a weak solution of problem (3.6). Therefore,
according to (Hg) and (Hy), we deduce that

U = v1Xz+ + VaXz—

is an heteroclinic solution of problem (1.1). O
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