ALL GRAPHS
WITH PAIRED-DOMINATION NUMBER TWO
LESS THAN THEIR ORDER

Włodzimierz Ulatowski

Communicated by Mirko Horňák

Abstract. Let \(G = (V, E) \) be a graph with no isolated vertices. A set \(S \subseteq V \) is a paired-dominating set of \(G \) if every vertex not in \(S \) is adjacent with some vertex in \(S \) and the subgraph induced by \(S \) contains a perfect matching. The paired-domination number \(\gamma_p(G) \) of \(G \) is defined to be the minimum cardinality of a paired-dominating set of \(G \). Let \(G \) be a graph of order \(n \). In [Paired-domination in graphs, Networks 32 (1998), 199–206] Haynes and Slater described graphs \(G \) with \(\gamma_p(G) = n \) and also graphs with \(\gamma_p(G) = n - 1 \). In this paper we show all graphs for which \(\gamma_p(G) = n - 2 \).

Keywords: paired-domination, paired-domination number.

Mathematics Subject Classification: 05C69.

1. INTRODUCTION

All graphs considered in this paper are finite, undirected, without loops, multiple edges and isolated vertices. Let \(G = (V, E) \) be a graph with the vertex set \(V \) and the edge set \(E \). Then we use the convention \(V = V(G) \) and \(E = E(G) \). Let \(G \) and \(G' \) be two graphs. If \(V(G) \subseteq V(G') \) and \(E(G) \subseteq E(G') \) then \(G \) is a subgraph of \(G' \) (and \(G' \) is a supergraph of \(G \)), written as \(G \subseteq G' \). The number of vertices of \(G \) is called the order of \(G \) and is denoted by \(n(G) \). When there is no confusion we use the abbreviation \(n(G) = n \). Let \(C_n \) and \(P_n \) denote the cycle and the path of order \(n \), respectively. The open neighborhood of a vertex \(v \in V \) in \(G \) is denoted \(N_G(v) = N(v) \) and defined by \(N(v) = \{ u \in V : vu \in E \} \) and the closed neighborhood \(N[v] \) of \(v \) is \(N[v] = N(v) \cup \{ v \} \). For a set \(S \) of vertices the open neighborhood \(N(S) \) is defined as the union of open neighborhoods \(N(v) \) of vertices \(v \in S \), the closed neighborhood \(N[S] \) of \(S \) is \(N[S] = N(S) \cup S \). The degree \(d_G(v) = d(v) \) of a vertex \(v \) in \(G \) is the number of edges incident to \(v \) in \(G \); by our definition of a graph, this is equal to \(|N(v)| \).
A leaf in a graph is a vertex of degree one. A subdivided star $K^*_{1,t}$ is a star $K_{1,t}$, where each edge is subdivided exactly once.

In the present paper we continue the study of paired-domination. Problems related to paired-domination in graphs appear in [1–5]. A set M of independent edges in a graph G is called a matching in G. A perfect matching M in G is a matching in G such that every vertex of G is incident to an edge of M. A set $S \subseteq V$ is a paired-dominating set, denoted PDS, of a graph G if every vertex in $V - S$ is adjacent to a vertex in S and the subgraph $G[S]$ induced by S contains a perfect matching M. Therefore, a paired-dominating set S is a dominating set $S = \{u_1, v_1, u_2, v_2, \ldots, u_k, v_k\}$ with matching $M = \{e_1, e_2, \ldots, e_k\}$, where $e_i = u_i v_i$, $i = 1, \ldots, k$. Then we say that u_i and v_i are paired in S. Observe that in every graph without isolated vertices the end-vertices of any maximal matching form a PDS. The paired-domination number of G, denoted $\gamma_p(G)$, is the minimum cardinality of a PDS of G. We will call a set S a $\gamma_p(G)$-set if S is a paired-dominating set of cardinality $\gamma_p(G)$. The following statement is an immediate consequence of the definition of PDS.

Observation 1.1 ([4]). If u is adjacent to a leaf of G, then u is in every PDS.

Haynes and Slater [4] show that for a connected graph G of order at least six and with minimum degree $\delta(G) \geq 2$, two-thirds of its order is the bound for $\gamma_p(G)$.

Theorem 1.2 ([4]). If a connected graph G has $n \geq 6$ and $\delta(G) \geq 2$, then

$$\gamma_p(G) \leq 2n/3.$$

Henning in [5] characterizes the graphs that achieve equality in the bound of Theorem 1.2.

In [4] the authors give the solutions of the graph-equations $\gamma_p(G) = n$ and $\gamma_p(G) = n - 1$, where G is a graph of order n.

Theorem 1.3 ([4]). A graph G with no isolated vertices has $\gamma_p(G) = n$ if and only if G is mK_2.

Let \mathcal{F} be the collection of graphs C_3, C_5, and the subdivided stars $K^*_{1,t}$. Now, we can formulate the following statements.

Theorem 1.4 ([4]). For a connected graph G with $n \geq 3$, $\gamma_p(G) \leq n - 1$ with equality if and only if $G \in \mathcal{F}$.

Corollary 1.5 ([4]). If G is a graph with $\gamma_p(G) = n - 1$, then $G = H \cup rK_2$ for $H \in \mathcal{F}$ and $r \geq 0$.

In the present paper we consider the graph-equation

$$\gamma_p(G) = n - 2,$$

(1.1)

where $n \geq 4$ is the order of a graph G.

Our aim in this paper is to find all graphs G satisfying (1.1). For this purpose we need the following definition and statements.
Definition 1.6. A subgraph G of a graph G' is called a special subgraph of G', and G' is a special supergraph of G, if either $V(G) = V(G')$ or the subgraph $G'[V(G') - V(G)]$ has a perfect matching.

It is clear that if $V(G) = V(G')$ then the concepts “subgraph” and “special subgraph” are equivalent. Now we can formulate the following fact.

Fact 1.7. Let G be a special subgraph of G'.

a) If S is a PDS in G then $S' = S \cup (V(G') - V(G))$ is a PDS in G'.

b) If $\gamma_p(G) = n - r$ then $\gamma_p(G') \leq n' - r$, where $n = |V(G)|$, $n' = |V(G')|$ and $0 \leq r \leq n - 2$.

Proof. a) Assume that

$$S = \{u_1, v_1, u_2, v_2, \ldots, u_t, v_t\} \quad \text{and} \quad V(G') - V(G) = \{u_{t+1}, v_{t+1}, \ldots, u_k, v_k\},$$

where u_i and v_i are paired in S (for $i = 1, \ldots, t$) and in $V(G') - V(G)$ (for $i = t+1, \ldots, k$). Hence $M = \{e_1, e_2, \ldots, e_k\}$, where $e_i = u_i v_i$, for $i = 1, \ldots, k$, is a perfect matching in $G'[S']$. By definition of a PDS and by $V(G) - S = V(G') - S'$ we obtain the statement of a).

b) Let S be a γ_p-set in G, thus $|V(G) - S| = r$. It follows from a) that $S' = S \cup (V(G') - V(G))$ is a PDS in G'. Moreover, we have the equality

$$|S'| = n' - |V(G') - S'| = n' - |V(G) - S| = n' - r.$$

Therefore we obtain $\gamma_p(G') \leq |S'| = n' - r$. \qed

Now assume that G is a connected graph of order $n \geq 4$ satisfying (1.1). Let $S = \{u_1, v_1, u_2, v_2, \ldots, u_k, v_k\}$ be a $\gamma_p(G)$-set with a perfect matching $M = \{e_1, e_2, \ldots, e_k\}$, where $e_i = u_i v_i$ for $i = 1, 2, \ldots, k$, and $V - S = \{x, y\}$. By letting $\alpha(S)$ denote the minimum cardinality of a subset of S which dominates $V - S$, i.e.

$$\alpha(S) = \min\{|S' : S' \subseteq S, V - S \subseteq N(S')\}.$$

Let S_i be any set of size $\alpha(S)$ such that $S_i \subseteq S$ and $V - S \subseteq N(S_i)$. For S, M and S_i we define a graph H as follows:

$$V(H) = V(G) \quad \text{and} \quad E(H) = M \cup \{uv : u \in S_i, v \in \{x, y\}\}.$$

It is clear that H is a spanning forest of G; we denote it as $G sf(S, M, S_i)$.

2. THE MAIN RESULT

The main purpose of this paper is to construct all graphs G of order n for which $\gamma_p(G) = n - 2$. At first consider the family \mathcal{G} of graphs in Fig. 1. We shall show that only the graphs in family \mathcal{G} are connected and satisfy condition (1.1).
Theorem 2.1. Let G be a connected graph of order $n \geq 4$. Then $\gamma_p(G) = n - 2$ if and only if $G \in \mathcal{G}$.

Proof. Our aim is to construct all connected graphs G for which (1.1) holds. Let G be a connected graph of order $n \geq 4$ satisfying (1.1). We shall prove that $G \in \mathcal{G}$.

Let us consider the following cases.

Case 1. There exists a $\gamma_p(G)$-set S such that $\alpha(S) = 1$.

Case 1.1. $k = 1$. Then we have the graphs shown in Fig. 2. It is clear that the graphs H_i satisfy (1.1) and $H_i = G_i$ for $i = 1, 2, 3, 4$.

Figure 2 illustrates the graphs H_i, where the shaded vertices form a γ_p-set. We shall continue to use this convention in our proof.

At present for $k \geq 2$ we shall find all connected graphs G satisfying (1.1) and having a $\gamma_p(G)$-set S with $\alpha(S) = 1$. It is clear that in Case 1 any graph $G_{sf}(S, M, S_i)$ is independent of the choice of S, M and S_i, so we can write $G_{sf}(S, M, S_i) = G_{sf}$. The spanning forest G_{sf} consists of k components $G^{(1)}, G^{(2)}, \ldots, G^{(k)}$, where $G^{(1)} = K_{1,3}$.
with \(V(K_{1,3}) = \{x,y,u_1,v_1\} \), where \(u_1 \) is the central vertex, while \(G^{(i)} = K_2 \) for \(i = 2,\ldots,k \) (see Fig. 3). Now by adding suitable edges to \(G_{sf} \) we are able to reconstruct \(G \).

\[
\begin{align*}
&v_k \quad \circ \quad u_k \\
&v_1 \quad \circ \quad u_1 \\
&y \quad \circ \quad G_{sf} \quad x
\end{align*}
\]

Fig. 3. The spanning forest of \(G \)

Case 1.2. \(k = 2 \). Now we start with the graph \(H_5 \) (Fig. 4). In our construction of the desired connected graphs we add one or more edges to \(H_5 \). Thus, let us consider the following cases regarding the number of these edges.

Case 1.2.1. One edge (Fig. 5). One can see that \(H_6 = G_5 \) satisfies (1.1) but \(H_7 \) does not.

\[
\begin{align*}
&v_2 \quad \circ \quad u_2 \\
&v_1 \quad \circ \quad u_1 \\
&y \quad \circ \quad H_6 \quad x
\end{align*}
\]

Fig. 4. The spanning forest \(H_5 \)

\[
\begin{align*}
&v_2 \quad \bullet \quad u_2 \\
&v_1 \quad \bullet \quad u_1 \\
&y \quad \circ \quad H_6 \quad x
\end{align*}
\]

\[
\begin{align*}
&v_2 \quad \circ \quad u_2 \\
&v_1 \quad \circ \quad u_1 \\
&y \quad \circ \quad H_7 \quad x
\end{align*}
\]

Fig. 5. The graphs obtained by adding one edge to \(H_5 \)

Case 1.2.2. Two edges. For \(H_7 \) we have \(\gamma_p(H_7) = 6 - 4 = |V(H_7)| - 4 \). Thus, by Fact 1.7 b) for any special supergraph \(G' \) of \(H_7 \) we obtain \(\gamma_p(G') \leq |V(G')| - 4 \). Hence, we deduce that it suffices to add one edge to \(H_6 \). Since adding the edges \(u_1u_2 \) or \(u_1v_2 \)
leads to H_7, we shall omit these edges in our construction. Now consider the graphs of Fig. 6.

Certainly, $\gamma_p(H_8) = n - 4$, $\gamma_p(H_i) = n - 2$ and $H_i = G_{i-3}$ for $i = 9, \ldots, 12$. Using the above argument for H_8 we do not take v_1u_2. Let us consider the following cases.

Case 1.2.3. Three edges. It follows from Fact 1.7 b) that it suffices to add one edge to H_i for $i = 9, \ldots, 12$.

Case 1.2.3.1. H_9. Observe that $H_i = G_{i-3}, i = 13, 14, 15$, satisfy (1.1). Moreover, the graphs depicted in Fig. 7 are the unique graphs for which (1.1) holds in this case. Indeed, the edge v_2y leads to a supergraph of H_8, and joining u_2 to x we have H_{15}.

Case 1.2.3.2. H_{10}. Then we obtain a supergraph of H_7 by means of edge v_2y, a supergraph of H_8 by means of xy, u_2x, instead by adding u_2y we return to H_{15}.

Therefore, it remains to research the graph of Fig. 8. It obvious that (1.1) holds for $H_{16} = G_{13}$.
Case 1.2.3.3. H_{11}. Then it suffices to consider the graph of Fig. 9. Really, edges v_2x, v_2y lead to a supergraph of H_8 and u_2x, u_2y lead to H_{13}. Observe that for $H_{17} = G_{14}$ equality (1.1) is true.

Case 1.2.4. Four edges.

Case 1.2.4.1. H_{13}. Let G be a graph obtained by adding a new edge e to H_{13}. If $e = v_1y$ then $H_7 \subseteq G$; if $e = v_2y, v_2x$, then $H_8 \subseteq G$ and for $e = v_1x, u_2x$ we have the graph $G_{15} \in \mathcal{G}$ (Fig. 10).

Case 1.2.4.2. H_{14}. Keeping the above convention we note: if $e = xy$ then $H_7 \subseteq G$; if $e = v_2y, v_2x, u_2x$ then $H_8 \subseteq G$.

Fig. 8. The graph obtained from H_{10} by adding an edge

Fig. 9. $H_{11} + e$

Fig. 10. $H_{15} + e$
Case 1.2.4.3. H_{15}. If $e = v_2y$ then $H_7 \subseteq G$; if $e = xy, v_1y, u_2x$ then $H_8 \subseteq G$; if $e = v_1x$ then $G = G_{15}$. It is easy to see that (1.1) is true for G_{15}.

Case 1.2.4.4. H_{16}. In this case we conclude: if $e = xy$ then $H_7 \subseteq G$; if $e = v_2y, u_2x$ then $H_8 \subseteq G$; if $e = u_2y$ then $G = G_{15}$.

Case 1.2.4.5. H_{17}. Then we obtain the following results: if $e = v_2y, v_1y, u_2y$ then $H_7 \subseteq G$; if $e = v_2x$ then $H_8 \subseteq G$; if $e = u_2x$ then we have the graph H_{18} depicted in Fig. 11. It is clear that $H_{18} = G_{15}$.

Case 1.2.5. Five edges.

Case 1.2.5.1. G_{15}. Then it suffices to consider the following: if $e = v_1y$ then $H_7 \subseteq G$; if $e = v_1x$ then $H_8 \subseteq G$. Therefore, Case 1.2 is complete.

For case $k \geq 3$ we only consider graphs satisfying the condition $G[S'] = G_{sf}[S'] = K_{1,3}$ for $S' = \{x, y, u_1, v_1\}$. In other words, G contains the induced star $K_{1,3}$, where $V(K_{1,3}) = \{x, y, u_1, v_1\}$ and u_1 is the central vertex.

Case 1.3. $k = 3$. Then we start with the basic graph of Fig. 12. To obtain connected graphs we add two or more edges to H_{19} and investigate whether (1.1) holds for the resulting graphs. At first we find a forbidden subgraph $H \subseteq G$ i.e. such that $\gamma_p(H) = n - 4$. We have already shown two forbidden special subgraphs H_7, H_{20}, and we now present the other one in Fig. 13. For a while we return to the general case $k \geq 3$. The forbidden special subgraphs H_7 and H_{20} determine a means of construction of graphs G from G_{sf}.

Fig. 12. The spanning forest $G_{sf} = H_{19}$

Fig. 11. $H_{17} + e$, where $e = u_2x$
Claim 1. Let G be a connected graph satisfying (1.1) and obtained from $G_{sf} = H_{19}$. Then vertex u_i or v_i, $i = 2, \ldots, k$, can be adjacent to the vertices v_1, x, y, only.

Now we add at least two edges to H_{19}. We consider the following cases.

Case 1.3.1. Two edges. Then we obtain the graphs H_{21} and H_{22} for which (1.1) holds (Fig. 14).

Case 1.3.2. Three edges. At present it suffices to add one edge in H_{21}, H_{22}. This way we obtain the graphs depicted in Figure 15. Observe that (1.1) fails for H_{24} since $H_{20} \subseteq H_{24}$. Thus, H_{23} satisfies (1.1) but H_i, $i = 24, 25, 26$, do not.

Case 1.3.3. Four edges. By adding one edge to H_{23} we obtain the unique graph for which (1.1) holds (see Fig. 16). One can verify that in the remaining options we have special supergraphs of H_7, H_8, H_{20}, H_{25} or H_{26}.

Case 1.3.4. Five edges. Each new edge in H_{27} leads to a special supergraph of H_7, H_8, H_{20}, H_{25} or H_{26}. But the following statement is obvious.

Claim 2. The graphs H_7, H_8, H_{20}, H_{25} and H_{26} are forbidden special subgraphs for (1.1).
All graphs with paired-domination number two less than their order

We now study a generalization of the case $k = 3$. We keep our earlier assumption regarding the induced star $K_{1,3}$ with vertex set $\{u_1, v_1, x, y\}$.

Case 1.4. $k \geq 3$. Then we give one property of graphs satisfying (1.1).

Claim 3. Let G be a connected graph for which (1.1) holds and $k \geq 3$. If G contains the induced star $K_{1,3}$ with $V(K_{1,3}) = \{x, y, u_1, v_1\}$ then at least one vertex of $K_{1,3}$ is a leaf in G.

Proof. Consider some cases.

Case A. $k = 3$. It follows from our earlier investigations that H_{21}, H_{22}, H_{23} and H_{27} are the unique connected graphs satisfying (1.1) in this case. Thus, we have the desired result.

Case B. $k \geq 4$. Claim 1 and Fact 1.7 b) imply that a special subgraph $G[S]$ induced by $S = \{x, y, u_1, v_1, u_2, v_2, u_3, v_3\}$ is connected and satisfies (1.1), i.e. it must be one of the graphs $H_{21}, H_{22}, H_{23}, H_{27}$.

Case B.1. $G[S] = H_{21}$. We show that x is a leaf in G. Suppose not and let x be adjacent to v_i, where $i \geq 4$. Then we obtain the graph H_{28} in Fig. 17, for which (1.1) does not hold.
Fig. 17. \(x \) is adjacent to \(v_i \) for \(i \geq 4 \)

Case B.2. \(G[S] = H_{22} \).

Case B.2.1. Suppose that in \(G \) vertex \(v_i, i \geq 4 \), is adjacent to \(x \) and \(y \). Then for graph \(H_{29} \) depicted in Fig. 18 equality (1.1) is false since \(H_{20} \subseteq H_{29} \).

Fig. 18. \(v_i, \) for \(i \geq 4, \) is adjacent to \(x \) and \(y \)

Case B.2.2. Assume that in \(G \) vertices \(v_i \) and \(u_i, i \geq 4 \), are adjacent to \(x \) and \(y \), respectively (see Fig. 19). In this way we obtain graph \(H_{30} \) which does not satisfy (1.1) since \(H_{26} \subseteq H_{30} \).

Case B.2.3. Now, in \(G \) let vertices \(v_i \) and \(u_j, 4 \leq i < j \), be adjacent to \(x \) and \(y \), respectively (Fig. 20). As can be seen, (1.1) fails for \(H_{31} \), furthermore \(u_j \) is paired with \(y \), \(u_i \) with \(v_i \), \(u_3 \) with \(v_3 \) and \(v_4 \) with \(v_2 \). It follows from the above consideration that we omit the cases: \(G[S] = H_{23} \) and \(G[S] = H_{27} \), since \(H_{21}, H_{22} \) are subgraphs of \(H_{23}, H_{27} \). In all cases we obtain special subgraphs of \(G \) for which (1.1) fails, therefore \(G \) does not satisfy (1.1), a contradiction.
All graphs with paired-domination number two less than their order

Fig. 19. v_i is adjacent to x and u_i to y, where $i \geq 4$

Fig. 20. v_i is adjacent to x and u_j to y for $4 \leq i < j$

We are now in a position to construct the desired graphs for $k \geq 3$. Let G be a connected graph satisfying the following conditions:

a) (1.1) holds,

b) $k \geq 3$,

c) G contains the induced $K_{1,3}$ with $V(K_{1,3}) = \{x, y, u_1, v_1\}$.

According to Claims 1–3 we can reconstruct G based on G_{sf}. By Claim 3, at least one vertex of $K_{1,3}$, say x, is a leaf in G. Hence, by Claim 1, a vertex u_i or v_i, $i = 2, \ldots, k$, can be adjacent to v_1, y, only. Observe that one vertex among u_i, v_i, for $i = 2, \ldots, k$ is a leaf. Indeed, if v_jy and u_iy (v_1v_1 and u_1v_1) are edges of G then H_8 is a special subgraph of G, but if v_jy, $u_iv_1 \in E(G)$ then H_{25} is a special subgraph of G (Fig. 21). From the above investigations we obtain the desired graph in Fig. 22. One can see that (1.1) holds for $H_{32} = G_{16}$. We emphasize that the numbers of edges yw_i or v_1w_1, yp_j, v_1z_m can be zero here.
Note that the graphs H_{21}, H_{22}, H_{23} and H_{27} are particular instances of H_{32}. We next describe desired graphs G based on H_{32}. We now discard the assumption concerning the induced star $K_{1,3}$ i.e. edges joining x, y, v_1 are allowable. At first we add the edge yv_1 to H_{32} and obtain graph $H_{33} = G_{17}$ which satisfies (1.1) (Fig. 23).

We now consider the following exhaustive cases (Fig. 24). It easy to see that (1.1) is true for $H_{34} = G_{18}$ and $H_{35} = G_{19}$ but is false for H_i, $i = 36, \ldots, 39$.

Case 2. Each $\gamma_p(G)$-set S satisfies $\alpha(S) = 2$.

Case 2.1. There exists a set S containing vertices u, v that dominate $\{x, y\}$ such that u is paired with v in some perfect matching M of S. Without loss of generality we may assume that $u = u_1$, $v = v_1$.

Case 2.1.1. $k = 1$. Then the unique graphs $H_{30} = G_{20}$ and $H_{41} = G_{21}$ satisfying (1.1) are depicted in Fig. 25.

Now for a connected graph G with $k \geq 2$ the spanning forest $G_{sf}(S, M, S_i) = G_{sf}$ for $S_i = \{u, v\}$ is the sum of components $G^{(1)}, G^{(2)}, \ldots, G^{(k)}$, where $G^{(1)} = P_4$ and $G^{(i)} = K_2$ for $i = 2, \ldots, k$ (Fig. 26).

Case 2.1.2. $k = 2$. Now we start with the spanning forest of Fig. 27. In our construction of the desired connected graphs we add at least one edge to the graph H_{42}. Therefore, consider the following cases.
All graphs with paired-domination number two less than their order

Fig. 23. The family G_{17}

Fig. 24. The exhaustive cases

Fig. 25. The case for $k = 1$
Case 2.1.2.1. One edge (Fig. 28). Then we have $H_{43} = G_{22}$ and $H_{44} = G_{23}$ satisfy (1.1).

Case 2.1.2.2. Two edges. Now by adding one edge to H_{43} and H_{44} we obtain some graphs by exhaustion (Fig. 29). Observe (1.1) fails for H_{45}, H_{46} and holds for $H_{47} = G_{24}$, $H_{48} = G_{25}$ and $H_{49} = G_{26}$. Moreover graphs H_i for $i = 50, 51, 52$ are discussed in Case 1.

Case 2.1.2.3. Three edges. Then it suffices to add one edge to H_i, $i = 47, 48, 49$. One resulting graph is the graph H_{53} depicted in Fig. 30, which does not satisfy (1.1). One can verify that the remaining graphs in this case are supergraphs of H_{45}, H_{46} or are graphs discussed in Case 1.
Case 2.1.3. \(k \geq 3 \). At first we show some graphs for which (1.1) does not hold (Fig. 31).

For \(H_i, i = 54, \ldots, 57 \), (1.1) is false; in \(H_{54} \) the vertex \(u_1 \) is paired with \(u_2 \) and \(v_1 \) with \(u_3 \).

Now we start with the spanning forest depicted in Fig. 32.

Taking account of the forbidden special subgraphs \(H_i, i = 54, \ldots, 57 \), we can reconstruct \(G \) based on \(G_{sf} \). By the connectedness of \(G \) it is necessary to join vertices of both the edges \(u_i v_i \), \(u_j v_j \) with at least one vertex among \(u_1, v_1, x, y \). Thus we consider the following cases (without loss of generality we take the vertices \(u_i \) and \(u_j \) of the above edges). If \(u_i u_1 \in E(G) \) then we have two options: \(u_j v_1 \in E(G) \) or \(u_j x \in E(G) \). Instead, if \(u_i x \in E(G) \) then we have the following options: \(u_j x \in E(G) \) or \(u_j u_1 \in E(G) \). Replace \(u_1 \) by \(v_1 \) and \(x \) by \(y \) we obtain analogous results. This way we construct the desired graph \(G = H_{58} \) for which (1.1) holds (Fig. 33). Note that \(H_{58} = G_{27} \). We end this case with adding new edges in \(H_{58} \). At first, if \(u_i z \in E(G) \) and \(v_i z \in E(G) \), where \(2 \leq i \leq k \), \(z = u_1, v_1, x, y \), then we return to Case 1. Therefore,
let us consider all possible cases, which are depicted in Fig. 34. Then we obtain that (1.1) is true for $H_{60} = G_{28}$ but is false for H_{59} and H_{61}.

Fig. 31. The forbidden graphs

![Forbidden Graphs](image)

Fig. 32. The spanning forest for $k \geq 3$, where $2 \leq i < j \leq k$

![Spanning Forest](image)

Fig. 33. $H_{58} = G_{27}$

Case 2.2. For each S and for all vertices $u, v \in S$ that dominate $\{x, y\}$ the vertex u is not paired with v in any perfect matching of S. In this case the spanning forest $G_{sf}(S, M, S_i) = G_{sf}$, for each M and $S_i = \{u, v\}$, is depicted in Fig. 35.
All graphs with paired-domination number two less than their order

Fig. 34. $H_{58} + e$

Fig. 35. The spanning forest G_{sf} of a connected graph G

Now we search for connected graphs based on G_{sf} and consider the following cases.

Case 2.2.1. $k = 2$. Then by adding one edge we obtain the three options of Fig. 36: H_{62} does not satisfy (1.1) while $H_{63} = G_5$ and $H_{64} = G_{23}$.

Fig. 36. The case $k = 2$

Case 2.2.2. $k = 3$. Now consider the spanning forest depicted in Fig. 37. By joining the vertices u_1, v_1, x to u_2, v_2, y we could obtain $H_i, i = 62, 63, 64$, or their supergraphs. Hence the obtained graphs do not satisfy (1.1) or belong to Case 1 or Case 2.1. Therefore, it suffices to consider edges joining the above vertices to u_3 or v_3 (Fig. 38). Then $H_i, i = 65, \ldots, 69$, do not satisfy (1.1) but H_{70} belongs to the family G_{16}.
Case 2.2.3. $k > 3$. Then we obtain graphs for which (1.1) fails or graphs belonging to Case 1.

Conversely, let G be any graph of the family \mathcal{G}. It follows from the former investigations that (1.1) holds for G. \qed
We end this paper with the following statement obtained by Theorems 1.3, 1.4, 2.1 and Corollary 1.5.

Corollary 2.2. If G is a graph of order $n \geq 4$, then $\gamma_p(G) = n - 2$ if and only if

1) exactly two of the components of G are isomorphic to graphs of the family F given in Theorem 1.4 and every other component is K_2 or

2) exactly one of the components of G is isomorphic to a graph of the family G given in Theorem 2.1 and every other component is K_2.

REFERENCES

Włodzimierz Ulatowski
twoulat@mif.pg.gda.pl

Gdańsk University of Technology
Department of Technical Physics and Applied Mathematics
Narutowicza 11/12, 80–952 Gdańsk, Poland

Received: February 27, 2013.
Revised: May 14, 2013.
Accepted: May 21, 2013.