ON VERTEX \(b \)-CRITICAL TREES

Mostafa Blidia, Noureddine Ikhlef Eschouf, and Frédéric Maffray

Abstract. A \(b \)-coloring is a proper coloring of the vertices of a graph such that each color class has a vertex that has neighbors of all other colors. The \(b \)-chromatic number of a graph \(G \) is the largest \(k \) such that \(G \) admits a \(b \)-coloring with \(k \) colors. A graph \(G \) is \(b \)-critical if the removal of any vertex of \(G \) decreases the \(b \)-chromatic number. We prove various properties of \(b \)-critical trees. In particular, we characterize \(b \)-critical trees.

Keywords: \(b \)-coloring, \(b \)-critical graphs, \(b \)-critical trees.

Mathematics Subject Classification: 05C15.

1. INTRODUCTION

Let \(G \) be a simple graph with vertex-set \(V(G) \) and edge-set \(E(G) \). A coloring of the vertices of \(G \) is any mapping \(c : V(G) \to \mathbb{N} \). For every vertex \(v \) the integer \(c(v) \) is called the color of \(v \). A coloring is proper if any two adjacent vertices have different colors. The chromatic number \(\chi(G) \) of graph \(G \) is the smallest integer \(k \) such that \(G \) admits a proper coloring using \(k \) colors.

A \(b \)-coloring of \(G \) by \(k \) colors is a proper coloring of the vertices of \(G \) such that in each color class there exists a vertex that has neighbors in all the other \(k - 1 \) colors classes. We call any such vertex a \(b \)-vertex. The concept of \(b \)-coloring was introduced by Irving and Manlove [3,4]. The \(b \)-chromatic number \(b(G) \) of a graph \(G \) is the largest integer \(k \) such that \(G \) admits a \(b \)-coloring with \(k \) colors. It was proved in [3,4] that determining the \(b \)-chromatic number of a graph is an NP-complete problem.

A graph \(G \) is edge \(b \)-critical (resp. vertex \(b \)-critical) if the removal of any edge (resp. vertex) of \(G \) decreases the \(b \)-chromatic number. Ikhlef Eschouf [2] began the study of edge \(b \)-critical graphs. He characterized the edge \(b \)-critical \(P_4 \)-sparse graphs and edge \(b \)-critical quasi-line graphs. We propose here to study the effect of removing a vertex of a graph \(G \) on the \(b \)-chromatic number. From here on, “\(b \)-critical” will always mean vertex \(b \)-critical. We prove several properties of \(b \)-critical trees. In particular,
we show that if T is a b-critical tree, then $\Delta(T) \leq b(T) \leq \Delta(T) + 1$, where $\Delta(T)$ is the maximum degree in T. Finally, we give a characterization of b-critical trees.

For notation and graph theory terminology we follow [1]. Consider a graph G. For any $A \subset V(G)$, let $G[A]$ denote the subgraph of G induced by A, and let $G \setminus A$ be the subgraph induced by $V(G) \setminus A$. (If x is a vertex, we may write $G \setminus x$ instead of $G \setminus \{x\}$). For any vertex v of G, the neighborhood of v is the set $N_G(v) = \{u \in V(G) \mid (u,v) \in E\}$ (or $N(v)$ if there is no confusion). Let $\omega(G)$ denote the size of a maximum clique of G. We let P_k denote the path with k vertices. A vertex of a path P_k distinct from an end-vertex is said to be an internal vertex. The complete bipartite graph with classes of sizes p and q is denoted by $K_{p,q}$, and any graph $K_{1,q}$ is called a star.

A tree is a connected graph with no induced cycle. A rooted tree is a tree T in which one vertex x is distinguished and called the root. For every vertex u of $T \setminus x$, the parent of u is the neighbor of u on the unique path from u to x, while a child of u is any other neighbor of u. A descendant of u is defined (recursively) to be either any child of u or any descendant of a child of u. We let $D(u)$ denote the set of descendants of u, and we write $D[u] = D(u) \cup \{u\}$. For any set A let $D(A) = \bigcup_{u \in A} D(u)$. The subtree of T induced by $D[u]$ is denoted by T_u. A vertex of degree one is called a leaf, and its neighbor is called a support vertex. If v is a support vertex, then L_v denotes the set of leaves adjacent to v.

2. PRELIMINARY RESULTS

We will use several definitions and results due to Irving and Manlove [3]. Remark that if a graph G admits a b-coloring with k colors, then G has at least k vertices of degree at least $k - 1$. Irving and Manlove define the m-degree $m(G)$ of G to be the largest integer ℓ such that G has at least ℓ vertices of degree at least $\ell - 1$. Thus every graph G satisfies $b(G) \leq m(G)$. The difference $m(G) - b(G)$ can be arbitrarily large: for example, $m(K_{p,p}) = p + 1$ while $b(K_{p,p}) = 2$. Irving and Manlove [3] proved that $b(T)$ can be computed easily for every tree, as follows. A vertex v is dense if $d_G(v) \geq m(G) - 1$.

Definition 2.1 ([3]). A tree T is pivoted if T has exactly $m(T)$ dense vertices and T contains a vertex v such that v is not dense and every dense vertex is adjacent either to v or to a neighbor of v of degree $m - 1$.

Theorem 2.2 ([3]). Let T be a tree. If T is a pivoted tree, then $b(T) = m(T) - 1$; else, $b(T) = m(T)$.

Now we prove a few general facts about b-critical trees.

Lemma 2.3. Let T be a b-critical tree and c be a b-coloring of T with $b(T)$ colors. Let B be the set of all b-vertices of c. Then:

(i) Every vertex of $V(T) \setminus B$ has a neighbor in B.

(ii) If z is a support vertex, then z is in B and is the only b-vertex of color $c(z)$.

Moreover, z does not have two neighbors of the same color such that one of them is a leaf.
Proof. (i) If a vertex u in $V(T) \setminus B$ has no neighbor in B, then c remains a b-coloring of $T \setminus u$ with $b(T)$ colors.

(ii) If any part of (ii) does not hold, then the removal of some leaf adjacent to z does not decrease the b-chromatic number.

Theorem 2.4. Let T be a b-critical tree, and let c be a b-coloring of T with $b(T)$ colors. Let B be the set of all b-vertices of c. Then:

(i) c does not have two b-vertices of the same color, i.e., $|B| = b(T)$.

(ii) Every vertex u in $V(T) \setminus B$ satisfies $d_T(u) \leq b(T) - 1$.

(iii) Every vertex x in B satisfies $b(T) - 1 \leq d_T(x) \leq b(T)$.

Proof. Let $k = b(T)$. If $k = 2$, it is immediate to see that $T = P_2$ and the theorem holds. So we may assume that $k \geq 3$.

(i) Suppose that c has two b-vertices x and y of the same color. If x or y is a support vertex, adjacent to a leaf z, then c remains a b-coloring with k colors of $T \setminus z$, a contradiction. So x and y are not support vertices. Let us root T at vertex x. Let u_1, \ldots, u_h be the neighbors of x. Since x is a b-vertex, we have $h \geq k - 1$. For each i in $\{1, \ldots, h\}$, let T_i be the component of $T \setminus x$ that contains u_i. Since x is not a support vertex, T_i contains a support vertex z_i of T. Lemma 2.3 (ii) implies that z_i is the only b-vertex of color $c(z_i)$ in T; in particular, $c(z_i) \neq c(x)$. Therefore T contains at least $k - 1$ support b-vertices z_1, \ldots, z_h of distinct colors. If the number of support vertices is more than $k - 1$, then two of them have the same color, which contradicts Lemma 2.3 (ii). So it must be that $h = k - 1$ and each T_i contains exactly one support vertex. If any vertex u of $V(T) \setminus \{x, z_1, \ldots, z_{k-1}\}$ has degree at least 3, then the subgraph T_i that contains u contains two support vertices of T, a contradiction. So $d_T(u) \leq 2$. In particular, $d_T(y) \leq 2$. This implies $k = 3$, $d_T(x) = d_T(y) = 2$, and by Lemma 2.3 (ii) we also have $d_T(z_1) = d_T(z_2) = 2$. Hence T is a path. Since T contains at least four b-vertices such that two of them $(x$ and y) are non-support vertices of the same color, it follows that T is a path of at least 7 vertices. But this is not b-critical, a contradiction. Thus (i) holds.

By (i), we have $B = \{b_1, b_2, \ldots, b_k\}$, where b_i is the unique b-vertex of c of color i, for each i in $\{1, \ldots, k\}$. By Lemma 2.3 (i), we have $V(T) = N[b_1] \cup \cdots \cup N[b_k]$.

(ii) Let u be any vertex in $V(T) \setminus B$ and suppose that $d_T(u) \geq k$. Since $V(T) = N[b_1] \cup \cdots \cup N[b_k]$, we may assume that $u \in N(b_1)$. Vertex u is adjacent to at most $k - 2$ b-vertices, for otherwise either u is a b-vertex or there is no available color for u. Thus we may assume that $N(u) \cap B = \{b_1, \ldots, b_r\}$ with $1 \leq r \leq k - 2$. Since T is a tree, u has at most one neighbor in $N[b_i]$ for each i in $\{1, \ldots, k\}$. Hence $d_T(u) = k$, vertex u has a neighbor u_j in $N(b_j)$ for every j in $\{r + 1, \ldots, k\}$ and u_{r+1}, \ldots, u_k are pairwise distinct. We may assume that $c(u) = r + 1$. For each j in $\{r + 1, \ldots, k - 1\}$, let v_j be a vertex of color $j + 1$ in $N(b_j)$ (possibly $v_j = u_j$). We define a coloring π of T with k colors obtained from c as follows. For each j in $\{r + 1, \ldots, k - 1\}$, if $v_j \neq u_j$, then interchange the colors of u_j and v_j. All other vertices keep their color. We obtain that π is a b-coloring with k colors such that u and b_{r+1} are b-vertices of the same color, which contradicts Theorem 2.4 (i) for π.

(iii) Let \(x \) be a b-vertex and \(p = d_T(x) \). Clearly, \(p \geq k - 1 \) since \(x \) is a b-vertex. Let \(T_1, T_2, \ldots, T_p \) be the components of \(T \setminus x \). Suppose that \(p \geq k + 1 \). Then \(N(x) \) contains a leaf, for otherwise Theorem 2.4 (i) and Lemma 2.3 (ii) imply that \(|B| \geq d_T(x) + |\{x\}| \geq k + 2 \), a contradiction. For each \(r \in \{1, \ldots, k\} \) let \(N^r(x) \) be the set of neighbors of \(x \) of color \(r \). Let \(u \) be a leaf adjacent to \(x \), and let \(\ell \) be the color of \(u \). Then \(|N^\ell(x)| = 1 \), for otherwise, \(c \) remains a b-coloring of \(T \setminus u \) with \(k \) colors, a contradiction. Since \(p \geq k + 1 \), there is a color \(t \neq \ell \) such that \(|N^t(x)| \geq 2 \). We distinguish among two cases.

\textbf{Case 1}. \(|N^t(x)| \geq 3 \). Let \(x_1, x_2, x_3 \) be three vertices in \(N^t(x) \). We may assume that \(x_i \in T_i \), for \(i = 1, 2, 3 \). Lemma 2.3 (ii) and Theorem 2.4 (i) imply that one of \(T_1, T_2, T_3 \), say \(T_1 \), does not contain any b-vertex of color \(t \) or \(\ell \). We recolor the vertices of \(V(T_1) \cup \{u\} \) by exchanging colors \(t \) and \(\ell \). We obtain a b-coloring where the color of \(u \) appears on another vertex of \(N(x) \). Hence, \(c \) remains a b-coloring of \(T \setminus u \) with \(k \) colors, a contradiction.

\textbf{Case 2}. For every \(r \) in \(\{1, \ldots, k\} \), \(|N^r(x)| \leq 2 \). Since \(d_T(x) \geq k + 1 \), there are two colors that appear exactly twice in \(N(x) \). Without loss of generality, we may suppose that \(x_1, x_2 \in N^t(x) \) and \(x_3, x_4 \in N^h(x) \), with \(h \neq t, \ell \). Also we may suppose that \(x_i \in T_i \) for each \(i \in \{1, 2, 3, 4\} \). By Theorem 2.4 (i) and the pigeonhole principle, there exists a component \(T_s \) with \(1 \leq s \leq 4 \) that contains no b-vertex with color in \(\{t, \ell\} \) (or in \(\{h, \ell\} \)). Without loss of generality, we may suppose that \(T_1 \) contains no b-vertex colored \(t \) or \(\ell \). We recolor the vertices \(V(T_1) \cup \{u\} \) by exchanging colors \(t \) and \(\ell \) and obtain a contradiction as at the end of Case 1. This completes the proof of the theorem.

An immediate consequence of Theorem 2.4 is the following.

\textbf{Corollary 2.5.} \textit{If} \(T \) \textit{is a b-critical tree, then} \(\Delta(T) \leq b(T) \leq \Delta(T) + 1 \).

3. CHARACTERIZATION OF b-CRITICAL TREES

In this section, we give a characterization of b-critical trees. By Corollary 2.5, this amounts to characterizing the b-critical trees having a b-chromatic number equal to \(\Delta(T) \) or \(\Delta(T) + 1 \).

3.1. b-CRITICAL TREES WITH \(b(T) = \Delta(T) \)

In order to characterize the b-critical trees \(T \) with \(b(T) = \Delta(T) \), we define a family \(\mathcal{T}_1 \) as follows:

\textbf{Definition 3.1 (Class \(\mathcal{T}_1 \))}. A tree \(T \) is in \(\text{class } \mathcal{T}_1 \) if, and only if, for some integers \(k \) and \(p \) with \(k \geq 4 \) and \(2 \leq p \leq k - 2 \), the vertex-set of \(T \) can be partitioned into four sets \(\{v\}, D_1, D_2, X \) with the following properties:

- \(|D_1| = p \), and every vertex of \(D_1 \) is adjacent to \(v \);
- \(|D_2| = k - p \), and every vertex of \(D_2 \) has a neighbor in \(D_1 \);
- Every vertex of \(X \) has a neighbor in \(D_1 \cup D_2 \);
There is a vertex \(w \in D_1 \) such that \(w \) has a neighbor in \(D_2 \), \(w \) has degree \(k \), and every vertex of \(D_1 \cup D_2 \setminus \{w\} \) has degree \(k - 1 \).

Note that there is no other edge than those mentioned in the definition, because \(T \) is a tree. The definition implies easily that \(|X| = k^2 - 3k + p + 1 \). So \(T \) has \(k^2 - 2k + p + 2 \) vertices. Also, \(\Delta(T) = k \), \(m(T) = k \), the dense vertices are the vertices in \(D_1 \cup D_2 \), and \(b(T) = k \).

Class \(T_1 \) may contain several non-isomorphic graphs with the same value of \(k \) and \(p \), depending on the adjacency between \(D_1 \) and \(D_2 \).

Lemma 3.2. If \(T \in T_1 \), then \(T \) is \(b \)-critical.

Proof. As observed above, we have \(b(T) = k \) and \(m(T) = k \). Let \(Y = D_1 \cup D_2 \setminus \{w\} \). Consider any vertex \(x \) of \(T \). If \(x \in N[Y] \cup \{w\} \), then \(b(T \setminus x) \leq m(T \setminus x) \leq m(T) - 1 = k - 1 \). If \(x \in N(w) \), then \(T \setminus x \) is a pivoted tree. By Theorem 2.2, \(b(T \setminus x) = m(T) - 1 = k - 1 \). Thus \(T \) is \(b \)-critical. \(\square \)

Theorem 3.3. Let \(T \) be a tree with \(b(T) = \Delta(T) \). Then \(T \) is \(b \)-critical if and only if \(T \in T_1 \).

Proof. If \(T \in T_1 \), then by Lemma 3.2, \(T \) is \(b \)-critical. Now let us prove the converse. Let \(T \) be a \(b \)-critical tree with \(b(T) = \Delta(T) \). Let \(k = b(T) \). Let \(c \) be a \(b \)-coloring of \(T \) with \(k \) colors and let \(B \) be the set of all \(b \)-vertices of \(c \). By Theorem 2.4, there is a unique \(b \)-vertex \(b_i \) of color \(i \) for each \(i \in \{1, \ldots, k\} \), and so \(B = \{b_1, \ldots, b_k\} \).

Pick a vertex \(x \) of maximum degree, and root \(T \) at \(x \). Let \(L_x \) be the set of leaves adjacent to \(x \), let \(B_x = B \cap N(x) \) and \(Y_x = N(x) \setminus (B_x \cup L_x) \). Put \(Y_x = \{y_1, \ldots, y_q\} \).

By Theorem 2.4, \(x \) is a \(b \)-vertex. Since \(d_T(x) = k \), there are two vertices of the same color in \(N(x) \). On the other hand, since \(x \) is a \(b \)-vertex of degree \(b(T) \), all neighbors of \(x \) except these two must have different colors. We call these two the repeating pair. By Lemma 2.3 (ii), these two vertices are not in \(L_x \), and by Theorem 2.4 (i), one of them is not in \(B \). So one of them is in \(Y_x \), and so \(q \geq 1 \).

For each \(i \in \{1, \ldots, q\} \), let \(T_i \) be the component of \(T \setminus x \) that contains \(y_i \), and let \(B_i = B \cap V(T_i) \). Let \(B'_i = B \cap D(B_i) \). The definition of \(L_x \) and \(Y_x \) implies that \(T_i \) contains a support vertex of \(T \), and Lemma 2.3 implies that such a vertex is a \(b \)-vertex. Hence \(|B_i| \geq 1 \) for all \(i \in \{1, \ldots, q\} \). So \(|B| \geq q + 1 + |B_x| \). If \(L_x = \emptyset \), this inequality implies \(|B| \geq d_T(x) + 1 \), a contradiction. Therefore we have \(L_x \neq \emptyset \). For each \(i \in \{1, \ldots, q\} \), let \(L_i = \{v \in L_x \mid b_{c(v)} \in B_i\} \) and \(L' = \{v \in L_x \mid b_{c(v)} \in B'_i\} \).

Note that for any vertex \(z \) in \(L_x \), the color \(c(z) \) does not appear in \(N(x) \setminus z \), by Lemma 2.3. So \(L_x = L_1 \cup \cdots \cup L_q \cup L' \).

We observe that the following fact holds:

Let \(b_i, b_j \in B \) and \(y \in N(x) \). Suppose that \(c(x) \neq i, j \) and \(b_i \) and \(b_j \) are either both in \(D(y) \) or not in \(D(y) \). Then interchanging colors \(i \) and \(j \) in \(G[D(y)] \) produces a \(b \)-coloring of \(T \) with \(k \) colors.

Indeed, after the interchange the coloring is proper (because \(c(x) \neq i, j \)), every \(b \)-vertex \(b_h \) with \(h \not\in i, j \) is still a \(b \)-vertex of color \(h \), and \(b_i \) and \(b_j \) are either unchanged or \(b \)-vertices of color \(j \) and \(i \) respectively. Thus (3.1) holds.

All colors that appear in \(Y_x \) are different. \(\square \)
Suppose on the contrary that two vertices y_1, y_2 in Y_x have the same color h (so they form the unique repeating pair). Up to symmetry, we may assume that $b_h \notin B_1$. Recall that $L_x \neq \emptyset$. Pick any vertex $z \in L_x$ and let $\ell = c(z)$. By Lemma 2.3, we have $\ell \neq h$.

If b_ℓ is not in T_1, then we interchange colors h and ℓ in T_1. By (3.1), this produces a b-coloring π of T with k colors such that z is a leaf of a repeated color in $N(x)$. Hence, π remains a b-coloring of $T \setminus z$ with k colors, a contradiction. Therefore every color that appears in L_x has its b-vertex in T_1, i.e., $L_x = L_1$, and $L_2 = \cdots = L_q = L' = \emptyset$.

Then $b_h \in T_2$, for otherwise we should also have $L_x = L_2$. The set $B_3 \cup \cdots \cup B_q$ (if $q \geq 3$) must contain $q - 2$ b-vertices (because $B_j \neq \emptyset$ for all $j \in \{1, \ldots, q\}$), and these must be the b-vertices whose colors are in $\{y_3, \ldots, y_q\}$ (because all other colors have their b-vertices in $B_2 \cup B_1 \cup \{b_h\}$). By the pigeonhole principle, we have $|B_i| = 1$ for all i in $\{3, \ldots, q\}$ and also $|B_2| = 1$, i.e., $B_2 = \{b_h\}$. If T_2 has a vertex of degree at least 3 other than b_h, then there are at least two support vertices in T_2, and these are b-vertices, a contradiction. Therefore T_2 consists of a path between y_2 and b_h plus leaves attached to b_h. It is easy to recolor the vertices of T_2 in such a way that the coloring is proper, y_2 gets color ℓ and b_h remains a b-vertex of color h. This produces a b-coloring of T with k colors such that z is a leaf of a repeated color in $N(x)$. Hence, π remains a b-coloring of $T \setminus z$ with k colors, a contradiction. Thus (3.2) holds.

Claim (3.2) implies that the repeating pair can be written as $\{y_1, b_h\}$ with $y_1 \in Y_x$ and $b_h \in B_x$. Moreover we claim that

$$Y_x = \{y_1\}. \tag{3.3}$$

Suppose on the contrary that $|Y_x| \geq 2$. Then $D(y_2)$ contains a support vertex of T, and by Lemma 2.3, such a vertex is a b-vertex b_r. Note that $r \neq t$ and T_1 does not contain a b-vertex of color t or r. We interchange colors t and r in $G[T_1]$. By (3.1), this produces a b-coloring π with k colors. Vertex x has a neighbor x' of color r, and we have $x' \in L_x \cup Y_x$. Suppose that $x' \in Y_x$. Then $x' \neq y_1$, and Y_x contains two vertices of color r (in π), a contradiction to (3.2). So $x' \in L_x$. Then x' is a vertex with a repeated color in $N(x)$. Thus π remains a b-coloring of $T \setminus x'$ with k colors, a contradiction. Thus (3.3) holds.

Every child of a vertex in B_x is a leaf. \quad \tag{3.4}

Suppose the contrary. Then, for some vertex $\beta \in B_x$ the set $D(\beta)$ contains a support vertex of T, and by Lemma 2.3 such a vertex is a b-vertex b_r. Clearly $r \neq t$. Now T_1 contains no b-vertex colored t or r. Since x is a b-vertex, and by (3.3), L_x contains a vertex x' of color r. We interchange colors t and r in T_1. By (3.1), this produces a b-coloring π of T with k colors such that x' is a leaf of repeated color in $N(x)$. Hence, π remains a b-coloring of $T \setminus x'$ with k colors, a contradiction. Thus (3.4) holds.

Every child of y_1 is a b-vertex. \quad \tag{3.5}

Suppose that some child u of y_1 is not a b-vertex. By Lemma 2.3 (i), u is adjacent to a b-vertex b_r. Clearly, $r \neq t$ and $c(u) \neq r, t$. Since x is a b-vertex, and by (3.3), L_x contains a vertex x' of color r. Note that $D(y_1) \setminus D[u]$ contains no b-vertex of
color \(r \) or \(t \). We interchange colors \(t \) and \(r \) in \(G[T_1 \setminus D[u]] \). By (3.1), this produces a b-coloring \(\pi \) of \(T \) with \(k \) colors such that \(x^r \) is vertex with a repeated color in \(N(x) \). Thus \(\pi \) remains a b-coloring of \(T \setminus x^r \) with \(k \) colors, a contradiction. So (3.5) holds.

\[
L_x = L_1. \tag{3.6}
\]

Pick any vertex \(z \in L_x \) and let \(\ell = c(z) \). Suppose that \(b_\ell \) is not in \(T_1 \). Recall that \(b_\ell \in B_x \). So \(b_t \) and \(b_\ell \) are not in \(T_1 \). We interchange colors \(t \) and \(\ell \) in \(T_1 \). By (3.1), this produces a b-coloring \(\pi \) of \(T \) with \(k \) colors such that \(z \) is a leaf of a repeated color in \(N(x) \). Hence, \(\pi \) remains a b-coloring of \(T \setminus z \) with \(k \) colors, a contradiction. Therefore every color that appears in \(L_x \) has its b-vertex in \(T_1 \). Thus (3.6) holds.

Note that the preceding claims imply that \(B = \{ x \} \cup B_x \cup B_1 \).

The distance between two vertices \(x \) and \(y \), denoted by \(\text{dist}(x, y) \), is the length of a shortest path from \(x \) to \(y \) in \(T \).

Every b-vertex \(b_r \in B_1 \) satisfies \(\text{dist}(y_1, b_r) \leq 2 \). \tag{3.7}

Suppose there exists a b-vertex \(b_r \in B_1 \) such that \(\text{dist}(y_1, b_r) \geq 3 \). Without loss of generality, we may suppose that \(\text{dist}(y_1, b_r) = \max \{ \text{dist}(y_1, v) \mid v \in B_1 \} \). This and Lemma 2.3 (ii) imply that \(b_r \) is a support vertex. Since \(x \) is a b-vertex, and by (3.3), \(L_x \) contains a vertex \(u \) of color \(r \). Let \(z_0 \) be the parent of \(b_r \) and \(z_1 \) be the parent of \(z_0 \). Note that \(z_0 \) is not adjacent to \(y_1 \) (in particular, \(z_1 \neq y_1 \)), for otherwise \(\text{dist}(y_1, b_r) < 3 \). Then there are two cases to consider.

Case 1. \(c(z_0) \neq t \). By Theorem 2.4 (i), \(D(y_1) \setminus D[z_0] \) contains no b-vertex of color \(r \) and \(t \). Thus, interchanging colors \(t \) and \(r \) in \(G[T_1 \setminus D[z_0]] \) produces a b-coloring \(\pi \) of \(T \) with \(k \) colors such that \(u \) is a vertex with a repeated color in \(N(x) \). Thus, \(\pi \) remains a b-coloring of \(T \setminus u \) with \(k \) colors, a contradiction.

Case 2. \(c(z_0) = t \). Then \(z_0 \) is not a b-vertex. Also, \(D(z_0) \) contains no b-vertices of colors \(c(x) \) and \(t \). If \(c(z_1) \neq c(x) \), then we interchange the color \(t \) and \(c(z_1) \) in \(D(z_0) \). Hence, \(c(z_0) = c(x) \). Therefore, an exchange of colors as described in Case 1 produces a new b-coloring \(\pi \) of \(T \) with \(k \) colors such that \(u \) is vertex with a repeated color in \(N(x) \). Thus, \(\pi \) remains a b-coloring of \(T \setminus u \) with \(k \) colors, a contradiction. If \(c(z_1) = c(x) \), then \(z_1 \) is not a b-vertex. In this case, we can interchange colors \(t \) and \(r \) in \(T_1 \setminus D[z_1] \). This is possible since \(T_1 \setminus D[z_1] \) contains no b-vertices of color \(t \) and \(r \). We obtain a b-coloring \(\pi \) of \(T \) with \(k \) colors such that \(u \) is a vertex with a repeated color in \(N(x) \). Thus, \(\pi \) remains a b-coloring of \(T \setminus u \) with \(k \) colors, a contradiction. So (3.7) holds.

Every vertex \(v \in B \setminus \{ x \} \) satisfies \(d_T(v) = \Delta(T) - 1 \). \tag{3.8}

Recall that \(B = \{ x \} \cup B_x \cup B_1 \). First suppose that \(v \in B_x \). By (3.4), every child of \(v \) is a leaf. By Lemma 2.3 (ii), \(d_T(v) = \Delta(T) - 1 \). Now suppose that \(v \in B_1 \). If \(\text{dist}(v, y_1) = 2 \), then all children of \(v \) are leaves, for otherwise, by Lemma 2.3 (ii), \(D(y_1) \) contains a b-vertex that lies at distance at least three from \(y_1 \), which contradicts (3.7).

By Lemma 2.3 (ii), we have \(d_T(v) = \Delta(T) - 1 \). If \(\text{dist}(v, y_1) = 1 \) (i.e., \(v \) is a child of \(y_1 \)), then by Theorem 2.4 (iii), we have \(d_T(v) \geq \Delta(T) - 1 \). If \(d_T(v) = \Delta(T) \), then \(v \) can
serve the same role as \(x\) with \(Y(v) = \{y_1\}\). Then the analogue of (3.3) implies that \(B_v\) contains a \(b\)-vertex of color \(t\) different from \(b_i\). This contradicts Theorem 2.4 (i). So \(d_T(v) = \Delta(T) - 1\). Thus (3.8) holds.

Claims (3.3)–(3.8) imply that \(T \in T_1\) (where \(y_1\) plays the role of \(v\) and \(x\) plays the role of \(w\)). This completes the proof of Theorem 3.3.

\[\square\]

3.2. \(b\)-CRITICAL TREES WITH \(b(T) = \Delta(T) + 1\)

Let \(k = \Delta(T) + 1\). For the purpose of characterizing \(b\)-critical trees with \(b(T) = k\), we define a family \(T_2\) of trees as follows. A tree \(T\) is in \(T_2\) if there is a sequence \(T_1, T_2, \ldots, T_k\) of trees, with \(T = T_k\), where \(T_1\) is a star of order \(k\), and, for each \(i\) in \(\{1, \ldots, k - 1\}\), \(T_{i+1}\) can be obtained from \(T_i\) by one of the operations listed below.

- Operation \(O_1\): Identify the center of a star of order \(k - 1\) with one leaf of a support vertex of degree \(k - 1\) of \(T_i\).
- Operation \(O_2\): Attach a star of order \(k - 1\) of center \(x\) by joining \(x\) to any vertex of \(T_i\) such that \(1 \leq d_{T_i}(u) \leq k - 3\).
- Operation \(O_3\): Attach a star of order \(k\) by joining one of its leaves to any vertex of \(T_i\) such that \(1 \leq d_{T_i}(u) \leq k - 3\).

Let \(P\) be the class of pivoted trees.

\[\text{Lemma 3.4. If } T \in P, \text{ then } T \text{ is not } b\text{-critical.}\]

\[\text{Proof. Since } T \text{ is pivoted, we have } b(T) = m(T) - 1. \text{ Let } z \text{ be any leaf of } T. \text{ Then it is easy to see that } B(T \setminus z) = b(T). \text{ So } T \text{ is not } b\text{-critical.}\]

\[\text{Lemma 3.5. If } T \in T_2 \setminus P, \text{ then } T \text{ is } b\text{-critical with } b(T) = \Delta(T) + 1.\]

\[\text{Proof. Since } T \text{ is in } T_2, \text{ it is easy to check that } \Delta(T) = m(T) - 1. \text{ Since } T \text{ is not pivoted, we have } b(T) = m(T). \text{ Hence, } b(T) = \Delta(T) + 1. \text{ Consider any vertex } x \text{ in } T. \text{ By the definition of } T_2, \text{ we have } m(T \setminus w) \leq m(T) - 1, \text{ and consequently } b(T \setminus w) \leq \Delta(T). \text{ Thus, } T \text{ is } b\text{-critical.}\]

\[\text{Theorem 3.6. Let } T \text{ be a tree with } b(T) = \Delta(T) + 1. \text{ Then } T \text{ is } b\text{-critical if and only if } T \in T_2 \setminus P.\]

\[\text{Proof. Let } k = \Delta(T) + 1. \text{ Lemma 3.5 implies the sufficiency. To prove the necessity, let } T \text{ be a } b\text{-critical tree with } b(T) = k. \text{ We first show that } T \text{ belongs to } T_2. \text{ Since } b(T) = k = \Delta(T) + 1, \text{ Theorem 2.4 implies that } T \text{ has a unique } b\text{-vertex } b_i \text{ of color } i, \text{ for each } i \in \{1, \ldots, k\}, \text{ and that } d_T(b_i) = k - 1. \text{ Let } B = \{b_1, b_2, \ldots, b_k\}. \text{ For each } i, \text{ let } S_i = T[N[b_i]]. \text{ Then } S_i \text{ is a star of order } k. \text{ Root } T \text{ at } b_1 \text{ and assume without loss of generality that } \text{dist}(b_1, b_2) \leq \text{dist}(b_1, b_3) \leq \cdots \leq \text{dist}(b_1, b_k). \text{ Let } T_1 = S_1. \text{ For } i = 2, \ldots, k, \text{ let } T_i \text{ be the subgraph of } T \text{ induced by } V(S_1) \cup \cdots \cup V(S_i). \text{ Assume that } i \leq k - 1. \text{ Let } r \in \{1, \ldots, i\} \text{ be such that } \text{dist}(b_r, b_{i+1}) = \min\{\text{dist}(b_s, b_{i+1}) \mid 1 \leq s \leq i\}. \text{ Since } T \text{ is a tree, there is a unique path } P \text{ connecting } b_r \text{ to } b_{i+1}. \text{ The choice of } b_r \text{ implies that any internal vertex of } P \text{ is not a } b\text{-vertex.}\]
Suppose that the length of P is at least 4. Let u be a vertex of P that is not adjacent to b_r or b_{i+1}. The choice of b_r and b_{i+1} implies that u has no neighbor in B, so $b(T \setminus u) \geq b(T)$, a contradiction.

Now suppose that P has length 3. Let $P = b_r - u - v - b_{i+1}$. Then u and v are not b-vertices and we have $u \in V(T_i)$ and $v \notin V(T_i)$. Thus T_{i+1} is obtained from T_i by the third operation applied with star S_{i+1}.

Now suppose that P has length 2. Let $P = b_r - u - b_{i+1}$. Then u is not a b-vertex, and $u \in V(T_i)$. Thus T_{i+1} is obtained from T_i by the second operation applied to star $S_{i+1} \setminus \{u\}$.

Finally, suppose that P has length 1, that is, b_r is adjacent to b_{i+1}. Then T_{i+1} is obtained from T_i by the first operation applied to star $S_{i+1} \setminus \{b_r\}$.

At the end of the procedure, we have $T = T_k$, so T is obtained after $k - 1$ steps by one of the three operations O_1, O_2 or O_3, from a star of order k. Thus $T \in T_2$. By Lemma 3.4, $T \notin P$. This completes the proof.

We can now summarize our results as follows.

Theorem 3.7. A tree is b-critical if and only if it belongs to $T_1 \cup T_2 \setminus P$.

Acknowledgments

We thank the referee for many helpful comments.

This work was supported by Programmes Nationaux de Recherche: Code 8/u09/510.

REFERENCES

Mostafa Blidia
m_blidia@yahoo.fr

University of Blida
LAMDA-RO, Department of Mathematics
B.P. 270, Blida, Algeria

Noureddine Ikhlef Eschouf
nour_eshouf@yahoo.fr

Dr. Yahia Farès University of Médéa
Faculty of Science and Technology
Department of G.E.I., Algeria
Frédéric Maffray
frderic.maffray@g-scop.inpg.fr

Grenoble-INP, Université Joseph Fourier
C.N.R.S, Laboratoire G-SCOP
Grenoble, France

Received: May 9, 2011,
Revised: March 8, 2012.
Accepted: September 18, 2012.