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ON A CLASS
OF NONHOMOGENOUS QUASILINEAR PROBLEMS
IN ORLICZ-SOBOLEV SPACES

Asma Karoui Souayah

Abstract. We study the nonlinear boundary value problem —div ((a1(|Vu(z)|)+
+az(|Vu(z)])Vu(z)) = Nu|"® =2y — plu|*® =2y in Q, u = 0 on N, where Q is a bounded
domain in RY with smooth boundary, ), . are positive real numbers, ¢ and « are continuous
functions and a1, az are two mappings such that a1 (|t|)t, a2(|t|)¢, are increasing homeomor-
phisms from R to R. The problem is analysed in the context of Orlicz-Soboev spaces. First
we show the existence of infinitely many weak solutions for any A, u > 0. Second we prove
that for any p > 0, there exists A, sufficiently small, and \* large enough such that for any
A € (0, A) U (A", 00), the above nonhomogeneous quasilinear problem has a non-trivial weak
solution.

Keywords: variable exponent Lebesgue space, Orlicz-Sobolev space, critical point, weak
solution.
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1. INTRODUCTION AND PRELIMINARY RESULTS

Let  be a bounded domain in R, N > 3, with smooth boundary 9. In this paper
we are concerned with the problem

—div ((a1(|Vu]) + a2(|Vul)) Vi) = Au|?® =2y — plu[*® =2y forz € Q,
u#z0 forzxeQ, (1.1)
u=0 for z € 0Q.

We assume that a; : (0,00) = R, i = 1,2, are two functions such that the mappings
p; R =R, i=1,2, defined by

~_Jai(jtht for t#0,
7T 0 for t=0,
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are odd, increasing homeomorphisms from R onto R, ¢, a :  — (1, 00) are continuous
functions, and A, p are positive real numbers.

The study of this kind of problems has received more and more interest in the
last few years. In fact the interest in studying such problems was stimulated by their
application in mathematical physics see [17]. We refer especially to the results in the
recent papers [7-10,15,18,20,22-24,29].

Next, we introduce the functional space setting where problem (1.1) will be dis-
cussed. In fact, the operator in the divergence form is not homogeneous and thus, we
introduce an Orlicz-Sobolev space setting for problems of this type.

We start by recalling some basic facts about Orlicz spaces. We refer to the books of
Adams and Hedberg [1], Adams [2] and Rao and Ren [30] and the papers of Clement
et al. [3,4], Garcia-Huidobro et al. [5] and Gossez [6].

For ¢; : R — R, i = 1,2, which are odd, increasing homeomorphisms from R
onto R, we define

t

t
D,(t) = /gai(s)ds, (@) (t) = /(g@i)fl(s)ds for all teR,i=1,2.
0 0
We observe that ®;, i = 1,2, are Young functions, that is, ®;(0) = 0, ®; are con-
vex, and lim, o ®;(z) = 4o00. Furthermore, since ®;(xz) = 0 if and ouly if z = 0,
lim,_.o ¢7T(T) = 0, and limg,_, q)’T(T) = 400, then ®; are called N-functions. The
functions (®;)*, i = 1,2, are called the complementary functions of ®;, i = 1,2, and
they satisfy
(®;)*(t) = sup{st — ®;(s) : s > 0} for all ¢ > 0.

We also observe that (®;)*, i« = 1,2, are also N-functions and Young’s inequality
holds true
st < B;(s) + (P;)"(t) for all s, > 0.

The Orlicz spaces Lg,(2), i = 1,2, defined by the N-functions ®; (see [1-3]) are
spaces of measurable functions u :  — R such that

[ullLe, == sup /uvdm : /(@z)*(|v|)dm <1, <oo.
Q Q

Then (Lo, (2),-|Le,); i = 1,2, are Banach spaces whose norm is equivalent to the
Luxemburg norm

o, = nfd k>0 /@i (“(;)>dx <1
Q

For Orlicz spaces Holder’s inequality reads as follows (see [30, Inequality 4, p.79]):

/uvdx < 2[ullLg, [[V]|L - for allu € Lo, () and v € L(g,-(2), i=1,2. (1.2)
Q
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Next, we introduce the Orlicz-Sobolev space. We denote by W'Lg, (2), i = 1,2 the
Orlicz-Sobolev spaces defined by:

ou
1 py— . — ) =
W' Le,(Q) := {uEL@.(Q). oz, € Lo, (2),1 1,...,N}.

These are Banach spaces with respect to the norms

& + [ [Vul]|

[ul

Le; = |yl o, i=1,2

We also define the Orlicz-Sobolev spaces Wi Lg, (2),i = 1,2, as the closure of C§°(Q).
By Lemma 5.7 in [6] we obtain that on WiLg,(Q2),i = 1,2, we may consider some
equivalent norms:

ulli == [Vl [,
For an easier manipulation of the spaces defined above, we define
. tpi(t) 0 toi(t) .
i = f d i = 5 d 1, 24 1.3
(i)o := inf o (i) g i €{1,2} (1.3)

In this paper we assume that for each i € {1,2} we have

< (pi)? < o0, Vt>0.
The above relation implies that each ®;,4 € {1, 2}, satisfies the Ay—condition, i.e.

B(2t) < K;®;(t), Vit >0, (1.4)

where K;, ¢ € {1,2}, are positive constants (K; > 2) (see [25, Proposition 2.3]). On
the other hand, the following relations hold true:

ull#” < /fbi(|Vu|)dx < lul$?7° Vu € WlLe, () with |lul; <1, i=1,2,

Q
(1.5)
(o < [ ®,(|Vul)de < [[u]#)", Yu € Wi Lo, (Q) with [[ull; > 1, i=1,2
[ull;™ < | @:([Vul)dz < [Jull;™, Vu € Wy L, (Q) with [luf; > 1, i=1,2.
Q
(L.6)

Furthermore, in this paper we assume that for each i € {1,2} the function @, satisfies
the following condition:

[0,00) 2t = ®;(V1) (1.7)

is convex.

Condition (1.4) and (1.7) assure that for each i € {1,2} the Orlicz spaces Lg, ()
are uniformly convex spaces and thus, reflexive Banach spaces (see [25, Proposi-
tion 2.2|). That fact implies that also the Orlicz-Sobolev spaces Wi La, (Q), i € {1,2},
are reflexive Banach spaces.
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Remark 1.1. If ®;, ¢ € {1,2}, are N-functions we deduce that o(t) =
sup{®1(¢), 2(¢)} is an N-function and ® has a right derivate denoted by ®,(t) = ¢(t)
and ®(t) = fg D, (z)dx = fot o(x)dx for all t > 0.

The right- derivative ® () is non-decreasing and right-continuous (see [14, p. 51]).

On the other hand, since ®; satisfies the Ag-condition for ¢ € {1,2} we can deduce
that ® satisfies the As-condition i.e.

(2t) < KO(t), Vt>0, (1.8)

where K is a positive constant (K > 2).

We define 0 0
. . to(t 0 to(t
;= inf —~ and = sup ——, 1.9
PO B LR Y0 (1.9)
and we assume that
to(t) 0
1 < —2X2 < Yt > 0.
<800_q)(t)_go < 00, =
Thus, the following relations hold true
||u||“"0 < /®(|Vu|)d:c < |lul|?°, Yu € Wy Lo () with [jul| < 1, (1.10)
Q
[lu||?o < /<I>(|Vu|)dx < ||u||‘PU7 Yu € Wy Lg(Q) with ||luf > 1. (1.11)
Q

Since the function [0,00) 3 t — ®;(\/) i € {1,2} is convex, we can deduce that
[0,00) 3t — ®(V1) (1.12)

is convex.

Condition (1.8) and (1.12) assure that the Orlicz spaces Lg(€2) are uniformly
convex spaces and thus, reflexive Banach spaces. This fact implies that also the
Orlicz-Sobolev spaces Wi Lg (), are reflexive Banach spaces.

Remark 1.2. Since ®(t) = max{®,(¢t),P2(¢)} for any t > 0, we deduce that
W¢Le(R2) is continuously embedded in Wi Lg, (), i € {1,2} (see condition (7) in
[25]). By relation (1.9), W Lg(Q) is continuously embedded in W, '#°(Q). On the
other hand, it is known that W, *°(Q) is compactly embedded in L"(*)(Q) for any
r(r) € C(Q) with1 <r~ <rt < A],Vf’;o. Thus, we deduce that W} Lg (£2) is compactly

embedded in L™®)(Q) for any r(z) € C(Q) with 1 < r(z) < A],V_“’;O for all z € Q.

Remark 1.3. We point out certain examples of functions ¢ : R — R which are odd,
increasing homeomorphisms from R onto R and satisfy conditions (1.3) and (1.7) (see
[26, Remark 1]). For more details the reader can consult [13, Examples 1-3, p. 243].
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— Let
o(t) =plt|P"%t, VteR, (withp>1).

For this function it can be proved that

()0 = (9)° =p.
Furthermore, in this particular case the corresponding Orlicz space L (f2) is the
classical Lebesgue space LP(£2) while the Orlicz-Sobolev spaces Wi Lg () is the
classical Sobolev space VVO1 P(Q2). We will use the classical notation to denote the
Orlicz-Sobolev spaces in this particular case.
— Consider
o(t) = log(1 + |t°) [t|P%t, VteR, (with p,s > 1).

In this case it can be proved that

(@o=p (9 =p+s.
— Let

tP2¢
o(t) = 1

=—— ift = ith 2.
log(1—|— |t|)7 1 # 0730(0) 07 Wi p >

In this case we have
(Po=p-1, (p)°=p.

Next, we recall some background facts concerning the variable exponent Lebesgue
spaces. For more details we refer to the book by Musielak [27] and the paper by
Kovacik and Rékosnik [21], Mihiilescu and Rédulescu [22]. For relevant applications
and related results we refer to the recent books by Ghergu and R&dulescu [16] and
Kristaly, Radulescu and Varga [19].

Set

Ci(Q) ={h: he C(Q), h(z) > 1forallz € Q}.

For any h € C(Q) we define

ht =suph(z) and h~ = insf) h(z).

€N Te
For any p(x) € C, (), we define the variable exponent Lebesgue space
LP@(Q) = {u: u is a Borel real-valued function on 2 and / Ju(z)|P® dz < oo}.
Q

We define on LP(®) | the so-called Luzemburg norm, by the formula
p(z)
Mp(aa) ::inf{,u>0: /’@ dxgl}.
I
Q

Variable exponent Lebesgue spaces resemble classical Lebesgue spaces in many as-
pects: they are separable and Banach spaces [21, Theorem 2.5, Corollary 2.7] and the




736 Asma Karoui Souayah

Holder inequality holds [21, Theorem 2.1|. The inclusions between Lebesgue spaces
are also naturally generalized [21, Theorem 2.8]: if 0 < || < oo and 7y, 7o are
variable exponents so that 1 (z) < ro(z) almost everywhere in € then there exists
the continuous embedding L"(®)(Q) — L1 (*)(Q).

We denote by L? (*)(€) the conjugate space of LP(*) (Q), where 1/p(z)+1/p/ (z) =1.
For any u € L@ (Q) and v € LP'®)(Q) the Holder type inequality

‘ / uv dx
is held.

An important role in manipulating the generalized Lebesgue-Sobolev spaces is
played by the modular of the LP(*)(Q) space, which is the mapping Pp(z) LP)(Q) —

R defined by
pp(x) / |u‘p (@) dx.

1

The space W1P(®)(Q) is equipped by the following norm:
l[ull = [ulp) + [Vulp)

We recall that if (u,), v € WP®)(Q) and p* < co then the following relations hold:
. - +
mln(|u|§($), |U‘§($)) < Ppa) (1) < max(|u|p(z |u|p(m ) (1.14)

min(|Vul?, , [Vul?l,)) < ppio(IVul) < max((Vul?,,, [Vul?),  (115)

p(z)’
[Ulp(e) = 0 & pp(ay(w) = 0, i fun —ulp@) =0 & U pye)(un —u) =0,

[tn|pz) = 00 © Pp(a)(Un) — 00.
(1.16)

2. MAIN RESULTS

In what follows, we consider problem (1.1). Since ®(t) = max{®(¢), Po(t)} for any
t > 0, we deduce that Wi Le(f2) is continuously embedded in W Le, (), i € {1,2}
(see remark 1.2). Thus, problem (1.1) will be analyzed in the space W Lg(€2).

We say that u € Wi Le(2) is a weak solution of (1.1) if

/ ((a1(|Vu|) + ax(|Vul)) VaVo — Nu|1® =2y + u\u|o‘(x)_2uv) dx =0,
Q

for any v € W} Lo ().
We will prove the following two results.
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Theorem 2.1. For any A\, u > 0 problem (1.1) has infinitely many weak solutions
provided that

N<p0
N — b

g~ >max(¢’, (91)% (¢2)’,a®) and ¢" <

Theorem 2.2. (i) For any pn > 0 there exists A, > 0 under which problem (1.1)

has a nontrivial weak solution, provided that ¢~ < min(yo, (¢1)o, (P2)o, ™) and

+ A+ Neo
max(at,q") < N
Nepo

(ii) IfqT <a” anda™ < poged
A* > 0 such that for any X > X\*, problem (1.1) has a nontrivial weak solution.

then for any p > 0, there exists also a critical value

3. PROOF OF THEOREM 2.1

The proof of Theorem 2.1 is based on a Zs-symmetric version for even functionals of
the mountain pass theorem (see Theorem 9.12 in [28]).

Let E denote the generalized Sobolev space W3 Lo (Q2) and ||| denote the norm
IV - |llg- Let A and p be arbitrary but fixed. The energy functional corresponding to
the problem (1.1) is defined as Jy , : E = R,

1 1

_ _ a(@) o ()

Iap(w) /<I>1(|Vu|)dx+/¢2(|Vu\)dx /\/q(x)lu| d$+u/a(x)|u| dx.
Q o) o) Q

The functional Jy , is well-defined on E and Jy, € C'(E,R). A simple calculation
shows that Jy ,, is well-defined on E and J , € C'(E,R) with the derivative given by

(T (), 0) = / (a1 (IVu]) + a2(|Vu])) VaVoda—
Q

- )\/ |u| @) =2yuda + u/ lu|*®)~2yvdx, Vv € E.
Q Q

In order to use the mountain pass theorem, we need the following lemmas.

Lemma 3.1. For any A, p > 0 there exists r,a > 0 such that Jx ,(u) > a > 0 for any
u € E with ||u]| = r.

Proof. Since ®(t) = max{®,(t), P2(t)} for any ¢ > 0 then
@, (|Vul|) + ®2(|Vu|) > &(|Vu|) Vz € Q. (3.1)

On the other hand, using Remark 1.2, ' is continuously embedded in LQ(x)(Q). So
there exists a positive constant C' such that, for all u € FE,



738 Asma Karoui Souayah

Suppose that |Ju| < min(1, &), then for all u € E with |ju] = p we have
|u\q(T) < 1.
Furthermore, relation (1.14) yields

q(z) q
[z <
Q

for all w € FE with ||u|| = p. The above inequality and relation (3.2) imply that for all
u € E with ||ul]| = p, we have

/|u\q(‘”)dx < O flufT (3.3)
Q
On the other hand, we have
/@mmwxzmwf (3.4)
Q

Then using relations (3.1), (3.3) and (3.4), we deduce that, for any u € E with
lu|| = p, the following inequalities hold true:

Iru(u) = /‘I)(|Vu|)d:c - i_/|u|q($)d$ >
q
a2 Q

A _
> Jlul¢” — 20T |ul|e.
q

Let hy(t) = t°° — q%C’qft‘f, t > 0. It is easy to see that hy(t) > 0 for all t € (0,t1),

where t; < (/\g;, ) ¢ So for any \,u > 0 we can choose r,a > 0 such that

Japu(u) > a >0 for all uw € E with ||ul| = r. The proof of Lemma 3.1 is complete. [J

Lemma 3.2. If By C E is a finite dimensional subspace, the set S = {u € Ej :
I pu(u) > 0} is bounded in E.

Proof. We have
/@MVMMxéKMMW“HmW%7VueE i€ {1,2}, (3.5)
Q

where K; (i € {1,2}) are positive constants. Indeed, using relations (1.5) and (1.6)
we have

[e9ubde < ul @ + [l vue B ie Lz 39)
Q
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On the other hand, using Remark 1.2, there exists a positive constant C; such that
ull, < Cillull, VueE, ie{l,2}. (3.7)

The last two inequality yield

/<I>i(|u\)dx < O ||yf| P00 4 0 ||, vue B, ie{l,2}, (3.8)
Q

and thus (3.5) holds true. Also we have

/|u|"(1)dx < |u|z(_z) + |u|zz;) , Yu€E. (3.9)
Q

The fact that E is continuously embedded in L(€2) assures the existence of a positive
constant C3 such that

The last two inequalities show that there exists a positive constant K3(u) such that

1 alx 14 a” a” at at
u/a@¢4<wx§5:«a Ju™ + 08 ") <

(3.11)
a at
< Ka(o) (lll*” + ), vue .
By inequality (3.5) and (3.11), we get
Tan(®) < K ([l 9 4 [[u] 07) 4 Ko (] ¥ + [luf 9"+
- + A . 3.12
+KaG) (") = = [ jupr@da (312

Q

for all u € F.
Let u € E be arbitrary but fixed. We define

Qe ={z e Quz)] <1}, Q> =0\0.
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Then we have
JA,#(U) <

1 0 2 0 - +
< Ka(llull 90+ Jull ) + Ka(lul “2° + Jull ) + Ka() (JJull* + ) -

)\/

AN |u|‘Z(’3)dx§
+

1 Q

0 0 a” at
< K (Jull 0  [ull #°) + Kol 2 + ) ©)") + K () (™ + Jlull*) -

Q>

N 0 0 a” at
< K (Jull P+ [ull #9°) + Ka(llull 2 + ) ©)") + K () (™ + Jlull*) -
A _
—q—Jr/|u|q dzx <
Q>

N 0 0 a~ at
< K (Jull P+ [ull #9°) + Kol 2 + ) ©)") + K () (™ + Jlull*) -

A - A -
—qj/|u|q dx+qj/|u|q dzx.
Q O

But for each A > 0 there exists positive constant K4(\) such that

q% / |u|? dr < K4()\), Vu€ E.
Q<

The functional |- [,- : E = R defined by

1/q™
wm:lﬂwwx ,
Q

is a norm in E. In the finite dimensional subspace E; the norm |u|,- and [ju|| are
equivalent, so there exists a positive constant K = K(E7) such that

llull| < Kl|u|,-, Yue Er.
So that there exists a positive constant K5(\) such that
T () < K ([[u €90 + [ €0°) + K (Jul| 2 + ul| ")+
+ Ka() ([l + ull™) + Ka(h) = Ks () [l
for all u € E4. Hence
Ky (u] 70 + ful| 0"+
o Kol 9 4 ) #2°) Ky () (lull -+ ™) + Ka(h) = K5O Jull 20,
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for all u € S. And since ¢~ > max((¢1)?, (p2)°,a™), we conclude that S is bounded
in E. O

Lemma 3.3. If {u,} C E is a sequence which satisfies the properties
| T u(un)| < Cu, (3.13)

dJyu(un) =0 as n— oo, (3.14)
where Cy is a positive constant, then {u,} possesses a convergent subsequence.

Proof. First we show that {u,,} is bounded in E. If not,we may assume that ||u,| — oo
as n — oo. Thus we may consider that |ju,| > 1 for any integer n. Using (3.14) it
follows that there exists N1 > 0 such that for any n > N; we have

[Ty, () [| < 1.

On the other hand, for all n > N; fixed, the application E 3 v — (dJ ,(un),v) is
linear and continuous. The above information implies that

[{dIxu(un), 0)| < ATy u(un)|[ I} < ol v e B, n> Ny

Setting v = u,, we have

| < / By (|Vun|)da + / B (| Vit )z — A / 1|9 i+ o / 1| < [
Q Q Q Q

for all n > N;. We obtain

~ lunll —/<I>1(|Vun|)dm—/<I>2(|Vun|)dx—,u/|un|°‘(”)dx < —)\/|un\Q(”)dx
Q Q

Q Q
(3.15)

for all n > Nj. Provided that ||u,| > 1 relation (3.1), (3.13) and (3.15) imply

1
Ci> ) = (1= =) | [ @29 ualdo + [ @a(Vunlide] +
Q Q

1 1 1

- = o) g

il = =) [l e = = | >
Q

1 1
> - - — >
>(1- ) / &(|Vun|)do = flun] =

Q
1 1
> (1= =) Juall®* = = Juall
q q

Letting n — oo we obtain a contradiction. It follows that {u,} is bounded in E. And
we deduce that there exists a subsequence, again denoted by {u,}, and v € E such



742 Asma Karoui Souayah

that {u,} converges weakly to u in E. Since F is compactly embedded in L*)(Q) and
L®)(Q), then {u,} converges strongly to u in L) (Q) and L*®)(Q), respectively.
Similar arguments as those used on page 50 in [12] imply that {u, } converges strongly
to u in E. The proof of Lemma 3.3 is complete. O

Proof of Theorem 2.1. It is clear that the functional Jy, is even and verifies
Jx1(0) =0. Lemma 3.1, Lemma 3.2 and Lemma 3.3 implies that the mountain pass
theorem can be applied to the functional Jy ,. We conclude that problem (1.1) has
infinitely many weak solutions in E. The proof of Theorem 2.1 is complete. O

4. PROOF OF THEOREM 2.2

First, we prove the assertion (i) in Theorem 2.2. We show that for any p > 0 there
exists A, > 0 such that for every A € (0, A,) the problem (1.1) has a nontrivial weak
solution. The key argument in the proof is related to Ekeland’s variational principle.
In order to apply it we need the following lemmas:

Lemma 4.1. For all p > 0 and all p € (0,1) there exist A\, > 0 and b > 0 such that,
for allw € E with ||u|| = p, Jxu(u) >b>0 forany e (0,\).

Ng

Proof. Since ¢" < N for all 2 € Q, we have the continuous embedding E <

— ¥o
L4®)(Q). This implies that there exists a positive constant M such that

() < Mlu|| Vu € E. (4.1)

We fix p € (0,1) such that p < min (1,1/M). Then for all u € E with |ju| = p we
deduce that

|u\q(z) < 1.

Furthermore, relations (1.14) yield for all u € E with |Ju|| = p, we have
/|u\‘1(”3)dx < .
Q

The above inequality and relations (4.1) imply, for all u € E with |Ju|| = p, that

/|u\q<w>dx < M ful7. (4.2)
Q
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Using relations (1.10), (3.1) and (4.2) we deduce that, for any u € E with ||u|| = p,
the following inequalities hold true:

A
Awm)z/@ﬂwmy+/¢ﬂwmmx—3;/mwﬂm+
Q

Q Q

o a(z)
+ a+/ |u| "' dx >
Q

z/qu—%/wmwz
Q

Q

>l — XM fu)” >
q

> p1° <ps0°q_ _ q):Mq_) .

By the above inequality, we remark that for

&~ g
M=ot (4.3)

$0
and for any A € (0, \.), there exists b = % > 0 such that

Iap(w) >b>0, Yu>0, YueE with |ul=p.

The proof of Lemma 4.1 is complete. O

Lemma 4.2. There exists ¢ € E such that ¢ >0, ¢ # 0 and Jy ,(tp) <0, fort >0
small enough.

Proof. Let | = min{(¢1)o, (p2)o, ¢ }. Since ¢~ < I, then let ¢¢ > 0 be such that
g~ + ¢y < . On the other hand, since ¢ € C(f), it follows that there exists an open
set Qo CC Q such that |¢(z) — ¢7| < ¢ for all z € Qp. Thus, we conclude that
q(x) < q~ +e€ <l forall x € Q.
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Let ¢ € C5°(£2) be such that supp(¢) D Qp, () = 1forallz € Qpand 0 < p < 1
in Q. Then using the above information for any ¢ € (0,1) we have

Tulte) = [ @V (te))do + / ®a(|V (t) -

Q
— a(z) T a(z) x
ey g |so\ dr <
Q Q
< [e:v o + / 2 (19 (0)])da—
Q

A «
= [ D1 Mf, / || *@dz <
q «
0 0

< t(m)o/@1(|V<p|)da:+t<*"2>0/<I>2(|V<p|)dl"+

sa-
+M7_/|¢|a(x)dx
Q

<p|q“”)dz, <

/\tq +e€o

<t | [0a19edo+ [ (Ve + 2 [ o] - 220
Q Q Q
Therefore,
J/\,,u,(t@) < 07
for t < §/(1=97 =€) with
Al€|

0<d<ming 1,
q* Lf(bl(v90|)d$+fq)2(|V<p|)dx+ L[|l dz
Q Q

Finally, we point out that [, ®1(|Ve|)dz + [, ®2(|Ve|)dz + L= [, [¢|*®dz > 0. In
fact, if [, ®1(|Ve|)dz + [, Pa( |Vg0|)dx+ Jo lol* @) dz =0, then Jo l|*®) dx = 0.
Usmg relatlon (1.14), we deduce that |cp|a(x) = 0 and consequently ¢ = 0 in Q which
is a contradiction. The proof of the lemma is complete. O

Proof of (i). Let u > 0, A, be defined as in (4.3) and A € (0, \,). By Lemma 4.1, it
follows that on the boundary of the ball centered at the origin and of radius p in E,
denoted by B,(0), we have

inf Jy, > 0. 4.4
o Ton (4.4)
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On the other hand, by Lemma 4.2, there exists ¢ € E such that Jy ,(tp) < 0, for
all ¢ > 0 small enough. Moreover, relations (1.10), (3.1) and (4.2) imply that for any
u € B,(0), we have

A _ _
Tape(w) > ||u|w°—q—_Mq ull .

It follows that
—oo < ¢:=_inf Jy, <0.
B, (0)
We let now 0 < € < infyp,(0) Jx,u —infp,(0) Jx,u- Using the above information, the

functional Jy , : B,(0) — R, is lower bounded on B,(0) and J , € C'(B,(0),R).
Then by Ekeland’s variational principle there exists u. € B,(0) such that

c < Iau(ue) <c+e,
0 < Jnp(uw) = Iapulue) +ellu—uc, uue

Since
Iaplue) < inf Jy , +e< inf Jy , +e< inf Jy,,
ploe) B0 B,(0) " aB,(0)
we deduce that u. € B,(0).
Now, we define I, : B,(0) — R by I ,(u) = Jx ,(u) + € [Ju — uc|. It is clear
that . is a minimum point of I , and thus

IA,M(Ue +t-v) - I/\;ll«(u€> >0
t p b

for small ¢t > 0 and any v € B;(0). The above relation yields
Do (e +tv) — Ty u(ue)
t

Letting t — 0 it follows that (dJy ,(u.),v)+e€l|v]| > 0 and we infer that ||dJx ,(ue)| <e.
We deduce that there exists a sequence {w,} C B,(0) such that

+e- o] > 0.

Iap(wy) — ¢ and  dJy u(w,) — Op-. (4.5)

It is clear that {w,} is bounded in E. Thus, there exists a subsequence again denoted
by {w,}, and w in E such that, {w,} converges weakly to w in E.

Since E is compactly embedded in L9®)(Q) and in L**)(Q), then {w,,} converges
strongly in L9®)(Q) and L*®)(Q). Using similar arguments as those used in the
proof of Lemma 3.3 we deduce that {w,} converges strongly to w in E. Since Jy , €
C'(E,R), we conclude that

dJy (wn) = dJy ,(w) as n — oo. (4.6)

Relations (4.4) and (4.5) show that dJ ,(w) = 0 and thus w is a weak solution for
problem (1.1). Moreover, by relation (4.5) it follows that J ,(w) < 0 and thus, w is
a nontrivial weak solution for (1.1).

The proof of (i) in Theorem 2.2 is complete. O
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Now we need to prove (ii) in Theorem 2.2. For this purpose, we will show that Jy ,
possesses a nontrivial global minimum point in E. With that end in view we start by
proving two auxiliary results.

Lemma 4.3. The functional Jy , is coercive on E.

Proof. For any a, b > 0 and 0 < k < [ the following inequality holds
k/l—k
atk—btlga(%> V> 0.
Using the above inequality we deduce that for any z € Q2 and u € F we have

A A by + q(z)/a(z)—q(x)
2 juft) - L pupe) < 2 (20 <
q «

q Hg—

A At qt/am—qt At q Jat—q~
< —|{— + | —
q (NQ) (NQ)

where C'is a positive constant independent of u and x. Integrating the above inequality
over {) we obtain

IN

:O’

A
q—_/|u|q<w)dx - O%_/|u|a(m)dx <D, (4.7)
Q Q

where D is a positive constant independent of w.
Using inequalities (1.11), (3.1) and (4.7) we obtain that, for any v € F with
|lu|]| > 1, we have

A
)= [@(Fuds = 2 [l @+ 2o [ ju@da =l - .
q Ja «
Q Q

Then Jy , is coercive and the proof of lemma is complete. O

Lemma 4.4. The functional Jy , is weakly lower semi-continuous.
Proof. Since the functionals A; : E — R,
A= /(Di(|Vu|)d:1:, Vi (1,2},
Q

are convex, it follows that A;+ As is convex. Thus to show that the functional A; + Ao
is weakly lower semi-continuous on F, it is enough to show that A; + As is strongly
lower semi-continuous on E (see Corollary III. 8 in [11]).
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We fix u € E and € > 0 and let v € E be arbitrary. Since A; + Ay is convex and
inequality (1.2) holds true, we have

A (v) + As(v) >
> Ay (u) + As(u +<A ) + Ab(u v—u>2

> Ay (u) + Az (u

\

a1(|Vaul) |V( v—u)\dm—/a2(|Vu|)|V(v—u)|d:v2
Q Q

> Ay (u) + As(u /<p1 V) [V (0 — )| de — /<p2(|w) V(0 — )| dx >
Q
2 A1) +Aa(w) = 2o = ully lea (V). =20 = ully lle2(Vu)l g, =

2 A1) +As(w) = 2 flu = v (le(Vu)llL,. +lle(Vu)lly,,) =
> Ay (u) + Aa(u) —

for all v € E with |lu— || < ¢/2 [||301(|Vu|)| ot ||<p2(|Vu|)||q)§] It follows that

A1+ A5 is strongly lower semi-continuous and since it is convex we obtain that A1+ Ag
is weakly lower semi-continuous.

Finally, if {w,} C E is a sequence which converges weakly to w in E then
{w,} converges strongly to w in LY@ (Q) and LY®)(Q) thus, Jy , is weakly lower
semi-continuous. The proof of Lemma 4.4 is complete. O

Proof of (ii). By Lemmas 4.3 and 4.4, we deduce that Jy , is coercive and weakly
lower semi-continuous on E. Then Theorem 1.2 in [31] implies that there exists uy , €
E a global minimizer of Jy , and thus a weak solution of problem.

We show that uy , is not trivial for A large enough. Indeed, letting ¢ty > 1 be a
fixed real and €y be an open subset of Q with |Q;] > 0 we deduce that there exists
ug € C§°(2) C E such that ug(x) = to for any z € Q; and 0 < ug(z) < to in Q\Qy.
We have

J)\V#(Uo) :/@1(|VU0Dd.§C+/(I)2(|VU0|)d£L‘7

Q Q

—)\/ U q(“:)dac—f—,u/ uo|*@da <
J q( )|0| J ()|0|

by _

where L(u) is a positive constant.

Thus there exists A* > 0 such that J ,,(u) < 0 for any A € [A*, 00). It follows that
Iapu(ug) < 0 for any A > A* and thus wy , is a nontrivial weak solution of problem
(1.1) for A large enough. The proof of the assertion (ii) is complete. O
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