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ON A CLASS
OF NONHOMOGENOUS QUASILINEAR PROBLEMS

IN ORLICZ-SOBOLEV SPACES

Asma Karoui Souayah

Abstract. We study the nonlinear boundary value problem −div
(
(a1(|∇u(x)|)+

+a2(|∇u(x)|))∇u(x)
)

= λ|u|q(x)−2u− µ|u|α(x)−2u in Ω, u = 0 on ∂Ω, where Ω is a bounded
domain in RN with smooth boundary, λ, µ are positive real numbers, q and α are continuous
functions and a1, a2 are two mappings such that a1(|t|)t, a2(|t|)t, are increasing homeomor-
phisms from R to R. The problem is analysed in the context of Orlicz-Soboev spaces. First
we show the existence of infinitely many weak solutions for any λ, µ > 0. Second we prove
that for any µ > 0, there exists λ∗ sufficiently small, and λ∗ large enough such that for any
λ ∈ (0, λ∗)∪ (λ∗,∞), the above nonhomogeneous quasilinear problem has a non-trivial weak
solution.

Keywords: variable exponent Lebesgue space, Orlicz-Sobolev space, critical point, weak
solution.
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1. INTRODUCTION AND PRELIMINARY RESULTS

Let Ω be a bounded domain in RN , N ≥ 3, with smooth boundary ∂Ω. In this paper
we are concerned with the problem
−div

(
(a1(|∇u|) + a2(|∇u|))∇u

)
= λ|u|q(x)−2u− µ|u|α(x)−2u for x ∈ Ω,

u 6≡ 0 for x ∈ Ω,

u = 0 for x ∈ ∂Ω.

(1.1)

We assume that ai : (0,∞) → R, i = 1, 2, are two functions such that the mappings
ϕi : R→ R, i = 1, 2, defined by

ϕi =

{
ai(|t|)t for t 6= 0,

0 for t = 0,
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are odd, increasing homeomorphisms from R onto R, q, α : Ω→ (1,∞) are continuous
functions, and λ, µ are positive real numbers.

The study of this kind of problems has received more and more interest in the
last few years. In fact the interest in studying such problems was stimulated by their
application in mathematical physics see [17]. We refer especially to the results in the
recent papers [7–10,15,18,20,22–24,29].

Next, we introduce the functional space setting where problem (1.1) will be dis-
cussed. In fact, the operator in the divergence form is not homogeneous and thus, we
introduce an Orlicz-Sobolev space setting for problems of this type.

We start by recalling some basic facts about Orlicz spaces. We refer to the books of
Adams and Hedberg [1], Adams [2] and Rao and Ren [30] and the papers of Clement
et al. [3, 4], Garciá-Huidobro et al. [5] and Gossez [6].

For ϕi : R → R, i = 1, 2, which are odd, increasing homeomorphisms from R
onto R, we define

Φi(t) =

t∫
0

ϕi(s)ds, (Φi)
∗(t) =

t∫
0

(ϕi)
−1(s)ds for all t ∈ R, i = 1, 2.

We observe that Φi, i = 1, 2, are Young functions, that is, Φi(0) = 0, Φi are con-
vex, and limx→∞Φi(x) = +∞. Furthermore, since Φi(x) = 0 if and only if x = 0,

limx→0
Φi(x)
x = 0, and limx→∞

Φi(x)
x = +∞, then Φi are called N -functions. The

functions (Φi)
∗, i = 1, 2, are called the complementary functions of Φi, i = 1, 2, and

they satisfy
(Φi)

∗(t) = sup{st− Φi(s) : s ≥ 0} for all t ≥ 0.

We also observe that (Φi)
∗, i = 1, 2, are also N -functions and Young’s inequality

holds true
st ≤ Φi(s) + (Φi)

∗(t) for all s, t ≥ 0.

The Orlicz spaces LΦi(Ω), i = 1, 2, defined by the N -functions Φi (see [1–3]) are
spaces of measurable functions u : Ω→ R such that

‖u‖LΦi
:= sup


∫
Ω

uvdx :

∫
Ω

(Φi)
∗(|v|)dx ≤ 1

 <∞.

Then (LΦi(Ω), ‖.‖LΦi
), i = 1, 2, are Banach spaces whose norm is equivalent to the

Luxemburg norm

‖u‖Φi := inf

k > 0 :

∫
Ω

Φi

(
u(x)

k

)
dx ≤ 1

 .

For Orlicz spaces Hölder’s inequality reads as follows (see [30, Inequality 4, p.79]):∫
Ω

uvdx ≤ 2‖u‖LΦi
‖v‖L(Φi)

∗ for all u ∈ LΦi(Ω) and v ∈ L(Φi)∗(Ω), i = 1, 2. (1.2)



On a class of nonhomogenous quasilinear problems in Orlicz-Sobolev spaces 733

Next, we introduce the Orlicz-Sobolev space. We denote by W 1LΦi(Ω), i = 1, 2 the
Orlicz-Sobolev spaces defined by:

W 1LΦi(Ω) :=
{
u ∈ LΦi(Ω) :

∂u

∂xi
∈ LΦi(Ω), i = 1, . . . , N

}
.

These are Banach spaces with respect to the norms

‖u‖1,Φi := ‖u‖Φi + ‖ |∇u| ‖Φi , i = 1, 2.

We also define the Orlicz-Sobolev spacesW 1
0LΦi(Ω), i = 1, 2, as the closure of C∞0 (Ω).

By Lemma 5.7 in [6] we obtain that on W 1
0LΦi(Ω), i = 1, 2, we may consider some

equivalent norms:
‖u‖i := ‖ |∇u| ‖Φi .

For an easier manipulation of the spaces defined above, we define

(ϕi)0 := inf
t>0

tϕi(t)

Φi(t)
and (ϕi)

0 := sup
t>0

tϕi(t)

Φi(t)
, and i ∈ {1, 2}. (1.3)

In this paper we assume that for each i ∈ {1, 2} we have

1 < (ϕi)0 ≤
tϕi(t)

Φi(t)
≤ (ϕi)

0 <∞, ∀t ≥ 0.

The above relation implies that each Φi, i ∈ {1, 2}, satisfies the ∆2−condition, i.e.

Φi(2t) ≤ KiΦi(t), ∀t ≥ 0, (1.4)

where Ki, i ∈ {1, 2}, are positive constants (Ki ≥ 2) (see [25, Proposition 2.3]). On
the other hand, the following relations hold true:

‖u‖(ϕi)
0

i ≤
∫
Ω

Φi(|∇u|)dx ≤ ‖u‖(ϕi)0

i ,∀u ∈W 1
0LΦi(Ω) with ‖u‖i < 1, i = 1, 2,

(1.5)

‖u‖(ϕi)0

i ≤
∫
Ω

Φi(|∇u|)dx ≤ ‖u‖(ϕi)
0

i ,∀u ∈W 1
0LΦi(Ω) with ‖u‖i > 1, i = 1, 2.

(1.6)
Furthermore, in this paper we assume that for each i ∈ {1, 2} the function Φi satisfies
the following condition:

[0,∞) 3 t→ Φi(
√
t) (1.7)

is convex.
Condition (1.4) and (1.7) assure that for each i ∈ {1, 2} the Orlicz spaces LΦi(Ω)

are uniformly convex spaces and thus, reflexive Banach spaces (see [25, Proposi-
tion 2.2]). That fact implies that also the Orlicz-Sobolev spacesW 1

0LΦi(Ω), i ∈ {1, 2},
are reflexive Banach spaces.
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Remark 1.1. If Φi, i ∈ {1, 2}, are N -functions we deduce that Φ(t) =
sup{Φ1(t),Φ2(t)} is an N -function and Φ has a right derivate denoted by Φ

′

d(t) = ϕ(t)

and Φ(t) =
∫ t

0
Φ
′

d(x)dx =
∫ t

0
ϕ(x)dx for all t ≥ 0.

The right- derivative Φ
′

d(x) is non-decreasing and right-continuous (see [14, p. 51]).
On the other hand, since Φi satisfies the ∆2-condition for i ∈ {1, 2} we can deduce
that Φ satisfies the ∆2-condition i.e.

Φ(2t) ≤ KΦ(t), ∀t ≥ 0, (1.8)

where K is a positive constant (K ≥ 2).

We define

ϕ0 := inf
t>0

tϕ(t)

Φ(t)
and ϕ0 := sup

t>0

tϕ(t)

Φ(t)
, (1.9)

and we assume that

1 < ϕ0 ≤
tϕ(t)

Φ(t)
≤ ϕ0 <∞, ∀t ≥ 0.

Thus, the following relations hold true

‖u‖ϕ
0

≤
∫
Ω

Φ(|∇u|)dx ≤ ‖u‖ϕ0 , ∀u ∈W 1
0LΦ(Ω) with ‖u‖ < 1, (1.10)

‖u‖ϕ0 ≤
∫
Ω

Φ(|∇u|)dx ≤ ‖u‖ϕ
0

, ∀u ∈W 1
0LΦ(Ω) with ‖u‖ > 1. (1.11)

Since the function [0,∞) 3 t→ Φi(
√
t) i ∈ {1, 2} is convex, we can deduce that

[0,∞) 3 t→ Φ(
√
t) (1.12)

is convex.
Condition (1.8) and (1.12) assure that the Orlicz spaces LΦ(Ω) are uniformly

convex spaces and thus, reflexive Banach spaces. This fact implies that also the
Orlicz-Sobolev spaces W 1

0LΦ(Ω), are reflexive Banach spaces.

Remark 1.2. Since Φ(t) = max{Φ1(t),Φ2(t)} for any t ≥ 0, we deduce that
W 1

0LΦ(Ω) is continuously embedded in W 1
0LΦi(Ω), i ∈ {1, 2} (see condition (7) in

[25]). By relation (1.9), W 1
0LΦ(Ω) is continuously embedded in W 1,ϕ0

0 (Ω). On the
other hand, it is known that W 1,ϕ0

0 (Ω) is compactly embedded in Lr(x)(Ω) for any
r(x) ∈ C(Ω̄) with 1 < r− ≤ r+ < Nϕ0

N−ϕ0
. Thus, we deduce thatW 1

0LΦ(Ω) is compactly
embedded in Lr(x)(Ω) for any r(x) ∈ C(Ω̄) with 1 < r(x) < Nϕ0

N−ϕ0
for all x ∈ Ω̄.

Remark 1.3. We point out certain examples of functions ϕ : R→ R which are odd,
increasing homeomorphisms from R onto R and satisfy conditions (1.3) and (1.7) (see
[26, Remark 1]). For more details the reader can consult [13, Examples 1–3, p. 243].
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— Let
ϕ(t) = p |t|p−2

t, ∀t ∈ R, (with p > 1).

For this function it can be proved that

(ϕ)0 = (ϕ)0 = p.

Furthermore, in this particular case the corresponding Orlicz space LΦ(Ω) is the
classical Lebesgue space Lp(Ω) while the Orlicz-Sobolev spaces W 1

0LΦ(Ω) is the
classical Sobolev space W 1,p

0 (Ω). We will use the classical notation to denote the
Orlicz-Sobolev spaces in this particular case.

— Consider
ϕ(t) = log(1 + |t|s) |t|p−2

t, ∀t ∈ R, (with p, s > 1).

In this case it can be proved that

(ϕ)0 = p, (ϕ)0 = p+ s.

— Let

ϕ(t) =
|t|p−2

t

log(1 + |t|)
, if t 6= 0, ϕ(0) = 0, with p > 2.

In this case we have
(ϕ)0 = p− 1, (ϕ)0 = p.

Next, we recall some background facts concerning the variable exponent Lebesgue
spaces. For more details we refer to the book by Musielak [27] and the paper by
Kováčik and Rákosník [21], Mihăilescu and Rădulescu [22]. For relevant applications
and related results we refer to the recent books by Ghergu and Rădulescu [16] and
Kristály, Rădulescu and Varga [19].

Set
C+(Ω) = {h : h ∈ C(Ω), h(x) > 1 for all x ∈ Ω}.

For any h ∈ C+(Ω) we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

For any p(x) ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω) =

{
u : u is a Borel real-valued function on Ω and

∫
Ω

|u(x)|p(x) dx <∞
}
.

We define on Lp(x), the so-called Luxemburg norm, by the formula

|u|p(x) := inf
{
µ > 0 :

∫
Ω

∣∣∣u(x)

µ

∣∣∣p(x)

dx ≤ 1
}
.

Variable exponent Lebesgue spaces resemble classical Lebesgue spaces in many as-
pects: they are separable and Banach spaces [21, Theorem 2.5, Corollary 2.7] and the
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Hölder inequality holds [21, Theorem 2.1]. The inclusions between Lebesgue spaces
are also naturally generalized [21, Theorem 2.8]: if 0 < |Ω| < ∞ and r1, r2 are
variable exponents so that r1(x) ≤ r2(x) almost everywhere in Ω then there exists
the continuous embedding Lr2(x)(Ω) ↪→ Lr1(x)(Ω).

We denote by Lp
′(x)(Ω) the conjugate space of Lp(x)(Ω), where 1/p(x)+1/p′(x)=1.

For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω) the Hölder type inequality∣∣∣∣ ∫
Ω

uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

p′−

)
|u|p(x)|v|p′(x), (1.13)

is held.
An important role in manipulating the generalized Lebesgue-Sobolev spaces is

played by the modular of the Lp(x)(Ω) space, which is the mapping ρp(x) : Lp(x)(Ω)→
R defined by

ρp(x)(u) =

∫
Ω

|u|p(x) dx.

The space W 1,p(x)(Ω) is equipped by the following norm:

‖u‖ = |u|p(x) + |∇u|p(x).

We recall that if (un), u ∈W 1,p(x)(Ω) and p+ <∞ then the following relations hold:

min(|u|p
−

p(x), |u|
p+

p(x)) ≤ ρp(x)(u) ≤ max(|u|p
−

p(x), |u|
p+

p(x)), (1.14)

min(|∇u|p
−

p(x), |∇u|
p+

p(x)) ≤ ρp(x)(|∇u|) ≤ max(|∇u|p
−

p(x), |∇u|
p+

p(x)), (1.15)

|u|p(x) → 0 ⇔ ρp(x)(u)→ 0, lim
n→∞

|un − u|p(x) = 0 ⇔ lim
n→∞

ρp(x)(un − u) = 0,

|un|p(x) →∞ ⇔ ρp(x)(un)→∞.
(1.16)

2. MAIN RESULTS

In what follows, we consider problem (1.1). Since Φ(t) = max{Φ1(t),Φ2(t)} for any
t ≥ 0, we deduce that W 1

0LΦ(Ω) is continuously embedded in W 1
0LΦi(Ω), i ∈ {1, 2}

(see remark 1.2). Thus, problem (1.1) will be analyzed in the space W 1
0LΦ(Ω).

We say that u ∈W 1
0LΦ(Ω) is a weak solution of (1.1) if∫

Ω

(
(a1(|∇u|) + a2(|∇u|))∇u∇v − λ|u|q(x)−2uv + µ|u|α(x)−2uv

)
dx = 0,

for any v ∈W 1
0LΦ(Ω).

We will prove the following two results.
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Theorem 2.1. For any λ, µ > 0 problem (1.1) has infinitely many weak solutions
provided that

q− > max(ϕ0, (ϕ1)0, (ϕ2)0, α+) and q+ <
Nϕ0

N − ϕ0
.

Theorem 2.2. (i) For any µ > 0 there exists λ∗ > 0 under which problem (1.1)
has a nontrivial weak solution, provided that q− < min(ϕ0, (ϕ1)0, (ϕ2)0, α

−) and
max(α+, q+) < Nϕ0

N−ϕ0
.

(ii) If q+ < α− and α+ < Nϕ0

N−ϕ0
, then for any µ > 0, there exists also a critical value

λ∗ > 0 such that for any λ ≥ λ∗, problem (1.1) has a nontrivial weak solution.

3. PROOF OF THEOREM 2.1

The proof of Theorem 2.1 is based on a Z2-symmetric version for even functionals of
the mountain pass theorem (see Theorem 9.12 in [28]).

Let E denote the generalized Sobolev space W 1
0LΦ(Ω) and ‖·‖ denote the norm

‖|∇ · |‖Φ. Let λ and µ be arbitrary but fixed. The energy functional corresponding to
the problem (1.1) is defined as Jλ,µ : E → R,

Jλ,µ(u) :=

∫
Ω

Φ1(|∇u|)dx+

∫
Ω

Φ2(|∇u|)dx− λ
∫
Ω

1

q(x)
|u|q(x)dx+ µ

∫
Ω

1

α(x)
|u|α(x)dx.

The functional Jλ,µ is well-defined on E and Jλ,µ ∈ C1(E,R). A simple calculation
shows that Jλ,µ is well-defined on E and Jλ,µ ∈ C1(E,R) with the derivative given by

〈dJλ,µ(u), v〉 =

∫
Ω

(
a1(|∇u|) + a2(|∇u|)

)
∇u∇vdx−

− λ
∫
Ω

|u|q(x)−2uvdx+ µ

∫
Ω

|u|α(x)−2uvdx, ∀ v ∈ E.

In order to use the mountain pass theorem, we need the following lemmas.

Lemma 3.1. For any λ, µ > 0 there exists r, a > 0 such that Jλ,µ(u) ≥ a > 0 for any
u ∈ E with ‖u‖ = r.

Proof. Since Φ(t) = max{Φ1(t),Φ2(t)} for any t ≥ 0 then

Φ1(|∇u|) + Φ2(|∇u|) ≥ Φ(|∇u|) ∀x ∈ Ω. (3.1)

On the other hand, using Remark 1.2, E is continuously embedded in Lq(x)(Ω). So
there exists a positive constant C such that, for all u ∈ E,

|u|q(x) ≤ C‖u‖. (3.2)
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Suppose that ‖u‖ < min(1, 1
C ), then for all u ∈ E with ‖u‖ = ρ we have

|u|q(x) < 1.

Furthermore, relation (1.14) yields∫
Ω

|u|q(x)dx ≤ |u|q
−

q(x)

for all u ∈ E with ‖u‖ = ρ. The above inequality and relation (3.2) imply that for all
u ∈ E with ‖u‖ = ρ, we have ∫

Ω

|u|q(x)dx ≤ Cq
−
‖u‖q

−
. (3.3)

On the other hand, we have ∫
Ω

Φ(|∇u|)dx ≥ ‖u‖ϕ
0

. (3.4)

Then using relations (3.1), (3.3) and (3.4), we deduce that, for any u ∈ E with
‖u‖ = ρ, the following inequalities hold true:

Jλ,µ(u) ≥
∫
Ω

Φ(|∇u|)dx− λ

q−

∫
Ω

|u|q(x)dx ≥

≥ ‖u‖ϕ
0

− λ

q−
Cq
−
‖u‖q

−
.

Let hλ(t) = tϕ
0 − λ

q−C
q−tq

−
, t > 0. It is easy to see that hλ(t) > 0 for all t ∈ (0, t1),

where t1 <
(

q−

λCq−

) 1

q−−ϕ0

. So for any λ, µ > 0 we can choose r, a > 0 such that
Jλ,µ(u) ≥ a > 0 for all u ∈ E with ‖u‖ = r. The proof of Lemma 3.1 is complete.

Lemma 3.2. If E1 ⊂ E is a finite dimensional subspace, the set S = {u ∈ E1 :
Jλ,µ(u) ≥ 0} is bounded in E.

Proof. We have∫
Ω

Φi(|∇u|)dx ≤ Ki(‖u‖ϕ0 + ‖u‖ϕ
0

), ∀u ∈ E, i ∈ {1, 2}, (3.5)

where Ki (i ∈ {1, 2}) are positive constants. Indeed, using relations (1.5) and (1.6)
we have ∫

Ω

Φi(|∇u|)dx ≤ ‖u‖((ϕi)0

i + ‖u‖(ϕi)
0

i , ∀u ∈ E, i ∈ {1, 2}. (3.6)
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On the other hand, using Remark 1.2, there exists a positive constant Ci such that

‖u‖i ≤ Ci ‖u‖ , ∀u ∈ E, i ∈ {1, 2}. (3.7)

The last two inequality yield

∫
Ω

Φi(|u|)dx ≤ C(ϕi)0

i ‖u‖(ϕi)0 + C
(ϕi)

0

i ‖u‖(ϕi)
0

, ∀u ∈ E, i ∈ {1, 2}, (3.8)

and thus (3.5) holds true. Also we have

∫
Ω

|u|α(x)dx ≤ |u|α
−

α(x) + |u|α
+

α(x) , ∀u ∈ E. (3.9)

The fact that E is continuously embedded in Lα(Ω) assures the existence of a positive
constant C3 such that

|u|α(x) ≤ C3 ‖u‖ , ∀u ∈ E. (3.10)

The last two inequalities show that there exists a positive constant K3(µ) such that

µ

∫
Ω

1

α(x)
|u|α(x)dx ≤ µ

α−

(
Cα
−

3 ‖u‖α
−

+ Cα
+

3 ‖u‖α
+
)
≤

≤ K3(µ)
(
‖u‖α

−
+ ‖u‖α

+
)
, ∀u ∈ E.

(3.11)

By inequality (3.5) and (3.11), we get

Jλ,µ(u) ≤ K1(‖u‖(ϕ1)0 + ‖u‖(ϕ1)0

) +K2(‖u‖(ϕ2)0 + ‖u‖(ϕ2)0

)+

+K3(µ)
(
‖u‖α

−
+ ‖u‖α

+
)
− λ

q+

∫
Ω

|u|q(x)dx
(3.12)

for all u ∈ E.
Let u ∈ E be arbitrary but fixed. We define

Ω< = {x ∈ Ω; |u(x)| < 1}, Ω≥ = Ω\Ω<.
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Then we have
Jλ,µ(u) ≤

≤ K1(‖u‖(ϕ1)0 + ‖u‖(ϕ1)0

) +K2(‖u‖(ϕ2)0 + ‖u‖(ϕ2)0

) +K3(µ)
(
‖u‖α

−
+ ‖u‖α

+
)
−

− λ

q+

∫
Ω

|u|q(x)dx ≤

≤ K1(‖u‖(ϕ1)0 + ‖u‖(ϕ1)0

) +K2(‖u‖(ϕ2)0 + ‖u‖(ϕ2)0

) +K3(µ)
(
‖u‖α

−
+ ‖u‖α

+
)
−

− λ

q+

∫
Ω≥

|u|q(x)dx ≤

≤ K1(‖u‖(ϕ1)0 + ‖u‖(ϕ1)0

) +K2(‖u‖(ϕ2)0 + ‖u‖(ϕ2)0

) +K3(µ)
(
‖u‖α

−
+ ‖u‖α

+
)
−

− λ

q+

∫
Ω≥

|u|q
−
dx ≤

≤ K1(‖u‖(ϕ1)0 + ‖u‖(ϕ1)0

) +K2(‖u‖(ϕ2)0 + ‖u‖(ϕ2)0

) +K3(µ)
(
‖u‖α

−
+ ‖u‖α

+
)
−

− λ

q+

∫
Ω

|u|q
−
dx+

λ

q+

∫
Ω<

|u|q
−
dx.

But for each λ > 0 there exists positive constant K4(λ) such that

λ

q+

∫
Ω<

|u|q
−
dx ≤ K4(λ), ∀u ∈ E.

The functional | · |q− : E → R defined by

|u|q− =

∫
Ω

|u|q
−
dx

1/q−

,

is a norm in E. In the finite dimensional subspace E1 the norm |u|q− and ‖u‖ are
equivalent, so there exists a positive constant K = K(E1) such that

‖u‖ ≤ K|u|q− , ∀u ∈ E1.

So that there exists a positive constant K5(λ) such that

Jλ,µ(u) ≤ K1(‖u‖(ϕ1)0 + ‖u‖(ϕ1)0

) +K2(‖u‖(ϕ2)0 + ‖u‖(ϕ2)0

)+

+K3(µ)
(
‖u‖α

−
+ ‖u‖α

+
)

+K4(λ)−K5(λ) ‖u‖q
−
,

for all u ∈ E1. Hence

K1(‖u‖(ϕ1)0 + ‖u‖(ϕ1)0

)+

+K2(‖u‖(ϕ2)0 + ‖u‖(ϕ2)0

) +K3(µ)
(
‖u‖α

−
+ ‖u‖α

+
)

+K4(λ)−K5(λ) ‖u‖q
−
≥ 0,
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for all u ∈ S. And since q− > max((ϕ1)0, (ϕ2)0, α+), we conclude that S is bounded
in E.

Lemma 3.3. If {un} ⊂ E is a sequence which satisfies the properties

|Jλ,µ(un)| < C4, (3.13)

dJλ,µ(un)→ 0 as n→∞, (3.14)

where C4 is a positive constant, then {un} possesses a convergent subsequence.

Proof. First we show that {un} is bounded in E. If not,we may assume that ‖un‖ → ∞
as n → ∞. Thus we may consider that ‖un‖ > 1 for any integer n. Using (3.14) it
follows that there exists N1 > 0 such that for any n > N1 we have

‖dJλ,µ(un)‖ ≤ 1.

On the other hand, for all n > N1 fixed, the application E 3 v 7→ 〈dJλ,µ(un), v〉 is
linear and continuous. The above information implies that

|〈dJλ,µ(un), v〉| ≤ ‖dJλ,µ(un)‖ ‖v‖ ≤ ‖v‖ , v ∈ E, n > N1.

Setting v = un we have

−‖un‖ ≤
∫
Ω

Φ1(|∇un|)dx+

∫
Ω

Φ2(|∇un|)dx−λ
∫
Ω

|un|q(x)dx+µ

∫
Ω

|un|α(x)dx ≤ ‖un‖

for all n > N1. We obtain

−‖un‖ −
∫
Ω

Φ1(|∇un|)dx−
∫
Ω

Φ2(|∇un|)dx− µ
∫
Ω

|un|α(x)dx ≤ −λ
∫
Ω

|un|q(x)dx

(3.15)
for all n > N1. Provided that ‖un‖ > 1 relation (3.1), (3.13) and (3.15) imply

C4 > Jλ,µ(un) ≥
(

1− 1

q−

)∫
Ω

Φ1(|∇un|)dx+

∫
Ω

Φ2(|∇un|)dx

+

+ µ
( 1

α+
− 1

q−

)∫
Ω

|un|α(x)dx− 1

q−
‖un‖ ≥

≥
(

1− 1

q−

)∫
Ω

Φ(|∇un|)dx−
1

q−
‖un‖ ≥

≥
(

1− 1

q−

)
‖un‖ϕ0 − 1

q−
‖un‖ .

Letting n→∞ we obtain a contradiction. It follows that {un} is bounded in E. And
we deduce that there exists a subsequence, again denoted by {un}, and u ∈ E such
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that {un} converges weakly to u in E. Since E is compactly embedded in Lq(x)(Ω) and
Lα(x)(Ω), then {un} converges strongly to u in Lq(x)(Ω) and Lα(x)(Ω), respectively.
Similar arguments as those used on page 50 in [12] imply that {un} converges strongly
to u in E. The proof of Lemma 3.3 is complete.

Proof of Theorem 2.1. It is clear that the functional Jλ,µ is even and verifies
Jλ,µ(0) = 0. Lemma 3.1, Lemma 3.2 and Lemma 3.3 implies that the mountain pass
theorem can be applied to the functional Jλ,µ. We conclude that problem (1.1) has
infinitely many weak solutions in E. The proof of Theorem 2.1 is complete.

4. PROOF OF THEOREM 2.2

First, we prove the assertion (i) in Theorem 2.2. We show that for any µ > 0 there
exists λ∗ > 0 such that for every λ ∈ (0, λ∗) the problem (1.1) has a nontrivial weak
solution. The key argument in the proof is related to Ekeland’s variational principle.
In order to apply it we need the following lemmas:

Lemma 4.1. For all µ > 0 and all ρ ∈ (0, 1) there exist λ∗ > 0 and b > 0 such that,
for all u ∈ E with ‖u‖ = ρ, Jλ,µ(u) ≥ b > 0 for any λ ∈ (0, λ∗).

Proof. Since q+ <
Nϕ0

N − ϕ0
for all x ∈ Ω, we have the continuous embedding E ↪→

Lq(x)(Ω). This implies that there exists a positive constant M such that

|u|q(x) ≤M‖u‖ ∀u ∈ E. (4.1)

We fix ρ ∈ (0, 1) such that ρ < min (1, 1/M). Then for all u ∈ E with ‖u‖ = ρ we
deduce that

|u|q(x) < 1.

Furthermore, relations (1.14) yield for all u ∈ E with ‖u‖ = ρ, we have∫
Ω

|u|q(x)dx ≤ |u|q
−

q(x).

The above inequality and relations (4.1) imply, for all u ∈ E with ‖u‖ = ρ, that∫
Ω

|u|q(x)dx ≤Mq−‖u‖q
−
. (4.2)
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Using relations (1.10), (3.1) and (4.2) we deduce that, for any u ∈ E with ‖u‖ = ρ,
the following inequalities hold true:

Jλ,µ(u) ≥
∫
Ω

Φ1(|∇u|) +

∫
Ω

Φ2(|∇u|)dx− λ

q−

∫
Ω

|u|q(x)dx+

+
µ

α+

∫
Ω

|u|α(x)dx ≥

≥
∫
Ω

Φ(|∇u|)− λ

q−

∫
Ω

|u|q(x)dx ≥

≥ ‖u‖ϕ
0

− λ

q−
Mq− ‖u‖q

−
≥

≥ ρq
−
(
ρϕ

0−q− − λ

q−
Mq−

)
.

By the above inequality, we remark that for

λ∗ =
q−

2Mq−
ρϕ

0−q− (4.3)

and for any λ ∈ (0, λ∗), there exists b =
ρϕ0

2
> 0 such that

Jλ,µ(u) ≥ b > 0, ∀µ > 0, ∀u ∈ E with ‖u‖ = ρ.

The proof of Lemma 4.1 is complete.

Lemma 4.2. There exists ϕ ∈ E such that ϕ ≥ 0, ϕ 6= 0 and Jλ,µ(tϕ) < 0, for t > 0
small enough.

Proof. Let l = min{(ϕ1)0, (ϕ2)0, α
−}. Since q− < l, then let ε0 > 0 be such that

q− + ε0 < l. On the other hand, since q ∈ C(Ω), it follows that there exists an open
set Ω0 ⊂⊂ Ω such that |q(x) − q−| < ε0 for all x ∈ Ω0. Thus, we conclude that
q(x) ≤ q− + ε0 < l for all x ∈ Ω0.
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Let ϕ ∈ C∞0 (Ω) be such that supp(ϕ) ⊃ Ω0, ϕ(x) = 1 for all x ∈ Ω0 and 0 ≤ ϕ ≤ 1
in Ω. Then using the above information for any t ∈ (0, 1) we have

Jλ,µ(tϕ) =

∫
Ω

Φ1(|∇(tϕ)|)dx+

∫
Ω

Φ2(|∇(tϕ)|)dx−

− λ
∫
Ω

tq(x)

q(x)
|ϕ|q(x)dx+ µ

∫
Ω

tα(x)

α(x)
|ϕ|α(x)dx ≤

≤
∫
Ω

Φ1(|∇(tϕ)|)dx+

∫
Ω

Φ2(|∇(tϕ)|)dx−

− λ

q+

∫
Ω

tq(x)|ϕ|q(x) + µ
tα
−

α−

∫
Ω

|ϕ|α(x)dx ≤

≤ t(ϕ1)0

∫
Ω

Φ1(|∇ϕ|)dx+ t(ϕ2)0

∫
Ω

Φ2(|∇ϕ|)dx+

+
µtα

−

α−

∫
Ω

|ϕ|α(x)dx− λtq
−+ε0

q+

∫
Ω0

|ϕ|q(x)dx,≤

≤ tl
∫

Ω

Φ1(|∇ϕ|)dx+

∫
Ω

Φ2(|∇ϕ|)dx+
µ

α−

∫
Ω

|ϕ|α(x)dx

− λtq
−+ε0

q+
|Ω0|.

Therefore,
Jλ,µ(tϕ) < 0,

for t < δ1/(l−q−−ε0) with

0 < δ < min

1,
λ|Ω0|

q+

[∫
Ω

Φ1(|∇ϕ|)dx+
∫
Ω

Φ2(|∇ϕ|)dx+ µ
α−

∫
Ω

|ϕ|α(x)dx

]
 .

Finally, we point out that
∫

Ω
Φ1(|∇ϕ|)dx+

∫
Ω

Φ2(|∇ϕ|)dx+ µ
α−

∫
Ω
|ϕ|α(x)dx > 0. In

fact, if
∫

Ω
Φ1(|∇ϕ|)dx+

∫
Ω

Φ2(|∇ϕ|)dx+ µ
α−

∫
Ω
|ϕ|α(x)dx = 0, then

∫
Ω
|ϕ|α(x)dx = 0.

Using relation (1.14), we deduce that |ϕ|α(x) = 0 and consequently ϕ = 0 in Ω which
is a contradiction. The proof of the lemma is complete.

Proof of (i). Let µ > 0, λ∗ be defined as in (4.3) and λ ∈ (0, λ∗). By Lemma 4.1, it
follows that on the boundary of the ball centered at the origin and of radius ρ in E,
denoted by Bρ(0), we have

inf
∂Bρ(0)

Jλ,µ > 0. (4.4)
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On the other hand, by Lemma 4.2, there exists ϕ ∈ E such that Jλ,µ(tϕ) < 0, for
all t > 0 small enough. Moreover, relations (1.10), (3.1) and (4.2) imply that for any
u ∈ Bρ(0), we have

Jλ,µ(u) ≥ ‖u‖ϕ
0

− λ

q−
Mq−‖u‖q

−
.

It follows that
−∞ < c := inf

Bρ(0)
Jλ,µ < 0.

We let now 0 < ε < inf∂Bρ(0) Jλ,µ− infBρ(0) Jλ,µ. Using the above information, the
functional Jλ,µ : Bρ(0) −→ R, is lower bounded on Bρ(0) and Jλ,µ ∈ C1(Bρ(0),R).
Then by Ekeland’s variational principle there exists uε ∈ Bρ(0) such that{

c ≤ Jλ,µ(uε) ≤ c+ ε,

0 < Jλ,µ(u)− Jλ,µ(uε) + ε‖u− uε‖, u 6= uε.

Since
Jλ,µ(uε) ≤ inf

Bρ(0)
Jλ,µ + ε ≤ inf

Bρ(0)
Jλ,µ + ε < inf

∂Bρ(0)
Jλ,µ,

we deduce that uε ∈ Bρ(0).

Now, we define Iλ,µ : Bρ(0) −→ R by Iλ,µ(u) = Jλ,µ(u) + ε · ‖u − uε‖. It is clear
that uε is a minimum point of Iλ,µ and thus

Iλ,µ(uε + t · v)− Iλ,µ(uε)

t
≥ 0,

for small t > 0 and any v ∈ B1(0). The above relation yields

Jλ,µ(uε + tv)− Jλ,µ(uε)

t
+ ε · ‖v‖ ≥ 0.

Letting t→0 it follows that 〈dJλ,µ(uε), v〉+ε‖v‖ ≥ 0 and we infer that ‖dJλ,µ(uε)‖≤ε.
We deduce that there exists a sequence {wn} ⊂ Bρ(0) such that

Jλ,µ(wn) −→ c and dJλ,µ(wn) −→ 0E∗ . (4.5)

It is clear that {wn} is bounded in E. Thus, there exists a subsequence again denoted
by {wn}, and w in E such that, {wn} converges weakly to w in E.

Since E is compactly embedded in Lq(x)(Ω) and in Lα(x)(Ω), then {wn} converges
strongly in Lq(x)(Ω) and Lα(x)(Ω). Using similar arguments as those used in the
proof of Lemma 3.3 we deduce that {wn} converges strongly to w in E. Since Jλ,µ ∈
C1(E,R), we conclude that

dJλ,µ(wn)→ dJλ,µ(w) as n→∞. (4.6)

Relations (4.4) and (4.5) show that dJλ,µ(w) = 0 and thus w is a weak solution for
problem (1.1). Moreover, by relation (4.5) it follows that Jλ,µ(w) < 0 and thus, w is
a nontrivial weak solution for (1.1).

The proof of (i) in Theorem 2.2 is complete.
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Now we need to prove (ii) in Theorem 2.2. For this purpose, we will show that Jλ,µ
possesses a nontrivial global minimum point in E. With that end in view we start by
proving two auxiliary results.

Lemma 4.3. The functional Jλ,µ is coercive on E.

Proof. For any a, b > 0 and 0 < k < l the following inequality holds

atk − btl ≤ a
(a
b

)k/l−k
, ∀t ≥ 0.

Using the above inequality we deduce that for any x ∈ Ω and u ∈ E we have

λ

q−
|u|q(x) − µ

α+
|u|α(x) ≤ λ

q−

(
λα+

µq−

)q(x)/α(x)−q(x)

≤

≤ λ

q−

[(
λα+

µq−

)q+/α−−q+

+

(
λα+

µq−

)q−/α+−q−
]

= C,

where C is a positive constant independent of u and x. Integrating the above inequality
over Ω we obtain

λ

q−

∫
Ω

|u|q(x)dx− µ

α+

∫
Ω

|u|α(x)dx ≤ D, (4.7)

where D is a positive constant independent of u.
Using inequalities (1.11), (3.1) and (4.7) we obtain that, for any u ∈ E with

‖u‖ > 1, we have

Jλ,µ(u) ≥
∫
Ω

Φ(|∇u|)dx− λ

q−

∫
Ω

|u|q(x)dx+
µ

α+

∫
Ω

|u|α(x)dx ≥ ‖u‖ϕ0 −D.

Then Jλ,µ is coercive and the proof of lemma is complete.

Lemma 4.4. The functional Jλ,µ is weakly lower semi-continuous.

Proof. Since the functionals Λi : E → R,

Λi =

∫
Ω

Φi(|∇u|)dx, ∀i ∈ {1, 2},

are convex, it follows that Λ1 +Λ2 is convex. Thus to show that the functional Λ1 +Λ2

is weakly lower semi-continuous on E, it is enough to show that Λ1 + Λ2 is strongly
lower semi-continuous on E (see Corollary III. 8 in [11]).
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We fix u ∈ E and ε > 0 and let v ∈ E be arbitrary. Since Λ1 + Λ2 is convex and
inequality (1.2) holds true, we have

Λ1(v) + Λ2(v) ≥

≥ Λ1(u) + Λ2(u) +
〈

Λ
′

1(u) + Λ
′

2(u), v − u
〉
≥

≥ Λ1(u) + Λ2(u)−
∫
Ω

a1(|∇u|) |∇(v − u)| dx−
∫
Ω

a2(|∇u|) |∇(v − u)| dx ≥

≥ Λ1(u) + Λ2(u)−
∫
Ω

ϕ1(|∇u|) |∇(v − u)| dx−
∫
Ω

ϕ2(|∇u|) |∇(v − u)| dx ≥

≥ Λ1(u) + Λ2(u)− 2 ‖v − u‖1 ‖ϕ1(∇u)‖LΦ∗1
− 2 ‖v − u‖2 ‖ϕ2(∇u)‖LΦ∗2

≥

≥ Λ1(u) + Λ2(u)− 2 ‖u− v‖ (||ϕ(∇u)||LΦ∗1
+ ||ϕ(∇u)||LΦ∗2

) ≥

≥ Λ1(u) + Λ2(u)− ε

for all v ∈ E with ‖u− v‖ < ε/2
[
||ϕ1(|∇u|)||Φ∗1 + ||ϕ2(|∇u|)||Φ∗2

]
. It follows that

Λ1+Λ2 is strongly lower semi-continuous and since it is convex we obtain that Λ1+Λ2

is weakly lower semi-continuous.
Finally, if {wn} ⊂ E is a sequence which converges weakly to w in E then

{wn} converges strongly to w in Lq(x)(Ω) and Lα(x)(Ω) thus, Jλ,µ is weakly lower
semi-continuous. The proof of Lemma 4.4 is complete.

Proof of (ii). By Lemmas 4.3 and 4.4, we deduce that Jλ,µ is coercive and weakly
lower semi-continuous on E. Then Theorem 1.2 in [31] implies that there exists uλ,µ ∈
E a global minimizer of Jλ,µ and thus a weak solution of problem.

We show that uλ,µ is not trivial for λ large enough. Indeed, letting t0 > 1 be a
fixed real and Ω1 be an open subset of Ω with |Ω1| > 0 we deduce that there exists
u0 ∈ C∞0 (Ω) ⊂ E such that u0(x) = t0 for any x ∈ Ω1 and 0 ≤ u0(x) ≤ t0 in Ω\Ω1.
We have

Jλ,µ(u0) =

∫
Ω

Φ1(|∇u0|)dx+

∫
Ω

Φ2(|∇u0|)dx−

− λ
∫
Ω

1

q(x)
|u0|q(x)dx+ µ

∫
Ω

1

α(x)
|u0|α(x)dx ≤

≤ L(µ)− λ

q+
tq
−

0 |Ω1| ,

where L(µ) is a positive constant.
Thus there exists λ∗ > 0 such that Jλ,µ(u0) < 0 for any λ ∈ [λ∗,∞). It follows that

Jλ,µ(u0) < 0 for any λ ≥ λ∗ and thus uλ,µ is a nontrivial weak solution of problem
(1.1) for λ large enough. The proof of the assertion (ii) is complete.
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