A NOTE ON THE INDEPENDENT ROMAN DOMINATION IN UNICYCLIC GRAPHS

Mustapha Chellali and Nader Jafari Rad

Abstract. A Roman dominating function (RDF) on a graph $G = (V, E)$ is a function $f : V \rightarrow \{0, 1, 2\}$ satisfying the condition that every vertex u for which $f(u) = 0$ is adjacent to at least one vertex v for which $f(v) = 2$. The weight of an RDF is the value $f(V(G)) = \sum_{u \in V(G)} f(u)$. An RDF f in a graph G is independent if no two vertices assigned positive values are adjacent. The Roman domination number $\gamma_R(G)$ (respectively, the independent Roman domination number $i_R(G)$) is the minimum weight of an RDF (respectively, independent RDF) on G. We say that $\gamma_R(G)$ strongly equals $i_R(G)$, denoted by $\gamma_R(G) \equiv i_R(G)$, if every RDF on G of minimum weight is independent. In this note we characterize all unicyclic graphs G with $\gamma_R(G) \equiv i_R(G)$.

Keywords: Roman domination, independent Roman domination, strong equality.

Mathematics Subject Classification: 05C69.

1. INTRODUCTION

We consider finite, undirected, and simple graphs G with vertex set $V = V(G)$ and edge set $E = E(G)$. The open neighborhood of a vertex $v \in V$ is $N(v) = N_G(v) = \{u \in V : uv \in E\}$ and the degree of v, denoted by $d_G(v)$, is the cardinality of its open neighborhood. A vertex of degree one is called a leaf, and its neighbor is called a support vertex. If v is a support vertex, then v is called strong if v is adjacent to at least two leaves.

For a graph G, let $f : V(G) \rightarrow \{0, 1, 2\}$ be a function, and let $(V_0; V_1; V_2)$ be the ordered partition of $V = V(G)$ induced by f, where $V_i = \{v \in V(G) : f(v) = i\}$ for $i = 0, 1, 2$. There is a $1 \rightarrow 1$ correspondence between the functions $f : V(G) \rightarrow \{0, 1, 2\}$ and the ordered partitions $(V_0; V_1; V_2)$ of $V(G)$. So we will write $f = (V_0; V_1; V_2)$.

A function $f : V(G) \rightarrow \{0, 1, 2\}$ is a Roman dominating function (RDF) on G if every vertex u of G for which $f(u) = 0$ is adjacent to at least one vertex v of G for which $f(v) = 2$. The weight of an RDF is the value $f(V(G)) = \sum_{u \in V(G)} f(u)$. An RDF f in a graph G is independent if no two vertices assigned positive values
are adjacent. The Roman domination number \(\gamma_R(G) \) (respectively, the independent Roman domination number \(i_R(G) \)) is the minimum weight of an RDF (respectively, independent RDF) on \(G \). A function \(f = (V_0; V_1; V_2) \) is called a \(\gamma_R(G) \)-function or \(\gamma_R \)-function for \(G \) if it is a Roman dominating function on \(G \) and \(f(V(G)) = \gamma_R(G) \). An \(i_R(G) \)-function or \(i_R \)-function for \(G \) is defined similarly. Let \(f \) be a \(\gamma_R(G) \)-function, and \(f(x) = 0 \) for some vertex \(x \). Then we say that \(x \) is a private neighbor of a vertex \(y \) with \(f(y) = 2 \) if \(f \) is not an RDF for \(G - xy \). Roman domination has been introduced by Cockayne et al. [3] and has been studied for example in [7]. The study of independent Roman domination has been initiated in [1].

We say that \(\gamma_R(G) \) and \(i_R(G) \) are strongly equal for \(G \), denoted by \(\gamma_R(G) \equiv i_R(G) \), if every \(\gamma_R(G) \)-function is an \(i_R(G) \)-function. In [2] a constructive characterization of all trees \(T \) with \(\gamma_R(T) \equiv i_R(T) \) is provided. Note that strong equality between two parameters was considered first by Haynes and Slater [6]. Later Haynes, Henning and Slater gave in [4] and [5] constructive characterizations of trees with strong equality between some domination parameters.

In this note we characterize all unicyclic graphs \(G \) with \(\gamma_R(G) \equiv i_R(G) \).

2. MAIN RESULT

We first describe the procedure given in [2] to built trees \(T \) with \(\gamma_R(T) \equiv i_R(T) \). Let \(\mathcal{T} \) be the family of trees \(T \) that can be obtained from \(k \) \((k \geq 1)\) disjoint stars of centers \(x_1, x_2, ..., x_k \) where each star has order at least three, attached by edges from their center vertices either to a single vertex or to the same leaf of a path \(P_3 \). Such a vertex is called a special vertex of \(T \). Let \(\mathcal{F} \) be the collection of trees \(T \) that can be obtained from a sequence \(T_1, T_2, ..., T_k \) \((k \geq 1)\) of trees, where \(T_1 \) is a star \(K_{1,t} \) with \(t \geq 2 \), \(T = T_k \) and, if \(k \geq 2 \), \(T_{i+1} \) can be obtained recursively from \(T_i \) by one of the following operations:

- **Operation** \(O_1 \) : Assume \(y \) is a leaf of \(T_i \) with \(f_i(y) = 0 \) and whose support vertex \(z \) is either strong or satisfies \(\gamma_R(T_i - z) > \gamma_R(T_i) \). Then \(T_{i+1} \) is obtained from \(T_i \) by adding a new vertex \(x \) and adding the edge \(xy \).

- **Operation** \(O_2 \) : Assume \(y \) is a vertex of \(T_i \). Then \(T_{i+1} \) is obtained from \(T_i \) by adding a tree \(T \in \mathcal{T} \) of special vertex \(x \) and adding the edge \(xy \) with the condition that if \(x \) is a support vertex, then \(y \) satisfies \(\gamma_R(T_i - y) \geq \gamma_R(T_i) \).

- **Operation** \(O_3 \) : Assume \(y \) is a vertex of \(T_i \) assigned \(0 \) or \(1 \) for every \(\gamma_R(T_i) \)-function. Then \(T_{i+1} \) is obtained from \(T_i \) by adding a path \(P_3 = u-v-w \) and adding the edge \(wy \).

Theorem 2.1 (Chellali and Jafari Rad [2]). Let \(T \) be a tree. Then \(\gamma_R(T) \equiv i_R(T) \) if and only if \(T = K_1 \) or \(T \in \mathcal{F} \).

Let \(\mathcal{H} \) be the class of all graphs \(G \) such that \(G \) is obtained from a tree \(T \in \mathcal{F} \) by joining two non-adjacent vertices \(v_1, v_2 \) such that:

(1) For every \(\gamma_R(T) \)-function \(f \), \(0 \in \{f(v_1), f(v_2)\} \),
Theorem 2.2. Let G be a unicyclic graph. Then $\gamma_R(G) \equiv i_R(G)$ if and only if $G \in \mathcal{H}$.

Proof. Let G be a unicyclic graph, where C is its unique cycle. Assume that $\gamma_R(G) \equiv i_R(G)$ and let $f = (V_0, V_1, V_2)$ be a $\gamma_R(G)$-function. By assumption f is independent. Let $x \in V(C) \cap N_0$, and let $N(x) \cap V(C) = \{y, z\}$. Clearly x cannot be a private neighbor for both y and z. Hence we assume that x is not a private neighbor of y and let $T = G - xy$. Then f is an RDF for T, and so $\gamma_R(T) \leq i_R(T) \leq \gamma_R(G) = i_R(G)$. If $\gamma_R(T) < i_R(G)$, and f_1 is a $\gamma_R(T)$-function, then f_1 is an RDF for G with weight less than $\gamma_R(G)$, a contradiction. Thus $\gamma_R(T) = i_R(T) = i_R(G) = \gamma_R(G)$. Next we show that any $\gamma_R(T)$-function is independent. Assume to the contrary that f is a $\gamma_R(T)$-function and f is not independent. Since f is an RDF for G and $\gamma_R(G) = \gamma_R(T)$, we obtain that f is a $\gamma_R(G)$-function, contradicting the fact that $\gamma_R(G) \equiv i_R(G)$. Thus f is independent and consequently, $\gamma_R(T) \equiv i_R(T)$. We deduce that $T \in \mathcal{F}$.

Next we prove (1). Suppose that there is a $\gamma_R(T)$-function f such that $0 \notin \{f(x), f(y)\}$. If $\{f(x), f(y)\} = \{2, 1\}$ and $f(x) = 1$, then g defined on G by $g(x) = 0$ and $g(u) = f(u)$ if $u \neq x$ is an RDF for G with weight less than $\gamma_R(G)$, a contradiction. Thus $\{f(x), f(y)\} \neq \{2, 1\}$ but then f would be a non-independent $\gamma_R(G)$-function, a contradiction since $\gamma_R(G) \equiv i_R(G)$.

Finally, let us prove (2). Assume that there is a non-independent RDF f for $T - x$ with weight $\gamma_R(T)$ such that $f(y) = 2$. Then f is a $\gamma_R(G)$-function which is not independent, a contradiction.

Conversely, assume that $G \in \mathcal{H}$. Let G be obtained from a tree $T \in \mathcal{F}$ by joining two vertices x and y such that (1) and (2) hold. First notice that $\gamma_R(G) \leq \gamma_R(T)$. Assume to the contrary that $\gamma_R(G) < \gamma_R(T)$, and let $f = (V_0, V_1, V_2)$ be a $\gamma_R(G)$-function. If $\{f(x), f(y)\} \neq \{0, 2\}$, then f is an RDF for T with weight less than $\gamma_R(T)$, a contradiction. Thus $\{f(x), f(y)\} = \{0, 2\}$. Suppose that $f(y) = 0$. Then $N(y) \cap V_2 = \{x\}$. Now g defined on T by $g(y) = 1$ and $g(u) = f(u)$ if $u \neq y$, is an RDF for T. Then $w(g) = \gamma_R(T)$ for otherwise g is an RDF for T with weight less than $\gamma_R(T)$ which is impossible. Hence g is a $\gamma_R(T)$-function and $0 \notin \{g(x), g(y)\}$, contradicting (1). Therefore $\gamma_R(G) = \gamma_R(T)$. Now let h be an $i_R(G)$-function. Note that h is a $\gamma_R(T)$-function since $\gamma_R(T) \equiv i_R(T)$. If h is not an RDF for G, then $0 \notin \{h(x), h(y)\}$, and h is a $\gamma_R(T)$-function that does not satisfy (1), a contradiction. Thus h is an RDF for G, and so $i_R(G) \leq \gamma_R(T) = \gamma_R(G) \leq i_R(G)$, implying that $i_R(G) = \gamma_R(G) = \gamma_R(T) = i_R(T)$. Thus h is an $i_R(G)$-function. We next show that each $\gamma_R(G)$-function is independent. Assume to the contrary that $f = (V_0, V_1, V_2)$ is a $\gamma_R(G)$-function and f is not independent. If $0 \notin \{f(x), f(y)\}$, then f is a $\gamma_R(T)$-function which is not independent, contradicting the fact that $T \in \mathcal{F}$. Thus $0 \in \{f(x), f(y)\}$, and we may assume that $f(y) = 0$. Furthermore, $N(y) \cap V_2 = \{x\}$. Then f_{T-y} is an RDF for $T - y$ with weight $\gamma_R(T)$ and $f(x) = 2$, a contradiction with (2). We deduce that $\gamma_R(G) \equiv i_R(G)$. \qed
Acknowledgements

This research was supported by “Programmes Nationaux de Recherche: Code 8/u09/510”.
This research of the second author was supported by Shahrood University of Technology.

REFERENCES

Mustapha Chellali
m_chellali@yahoo.com
University of Blida
LAMDA-RO Laboratory, Department of Mathematics
B.P. 270, Blida, Algeria

Nader Jafari Rad
n.jafarirad@shahroodut.ac.ir
Shahrood University of Technology
Department of Mathematics
Shahrood, Iran

Received: January 10, 2011.
Revised: May 2, 2012.
Accepted: May 7, 2012.