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A NOTE ON A RELATION
BETWEEN THE WEAK AND STRONG DOMINATION

NUMBERS OF A GRAPH

Razika Boutrig and Mustapha Chellali

Abstract. In a graph G = (V,E) a vertex is said to dominate itself and all its neighbors.
A set D ⊆ V is a weak (strong, respectively) dominating set of G if every vertex v ∈ V −S is
adjacent to a vertex u ∈ D such that dG(v) ≥ dG(u) (dG(v) ≤ dG(u), respectively). The weak
(strong, respectively) domination number of G, denoted by γw(G) (γs(G), respectively), is
the minimum cardinality of a weak (strong, respectively) dominating set of G. In this note
we show that if G is a connected graph of order n ≥ 3, then γw(G) + tγs(G) ≤ n, where
t = 3/(∆ + 1) if G is an arbitrary graph, t = 3/5 if G is a block graph, and t = 2/3 if G is a
claw free graph.
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1. INTRODUCTION

We consider finite, undirected, simple graphs. Let G be a graph, with vertex set V
and edge set E. The open neighborhood of a vertex v ∈ V is N(v) = {u ∈ V | uv ∈ E}
and the closed neighborhood is N [v] = N(v) ∪ {v}. For a subset S ⊆ V , the open
neighborhood is N(S) = ∪v∈SN(v) and the closed neighborhood is N [S] = N(S) ∪ S.
By G[S] we denote the subgraph induced by the vertices of S. If v is a vertex of V ,
then the degree of v denoted by dG(v), is the size of its open neighborhood. A tree is
a connected graph that contains no cycle. A star K1,q is a tree of order q + 1 with
at least q vertices of degree 1. A subdivided star SSq is obtained from a star K1,q by
replacing each edge uv of the star by a vertex w and edges uw and vw. The claw is
the star K1,3. Given any graph H, a graph G is H-free if it does not have any induced
subgraph isomorphic to H. A block graph is a graph in which every block (maximal
2-connected graph) is a clique. It is well-known that block graphs are exactly chordal
graphs that do not contain K4 − {e} as induced subgraph.

235

http://dx.doi.org/10.7494/OpMath.2012.32.2.235



236 Razika Boutrig and Mustapha Chellali

In [5], Sampathkumar and Pushpa Latha have introduced the concept of weak
and strong domination in graphs. A subset D ⊆ V is a weak dominating set (wd-set)
if every vertex v ∈ V − S is adjacent to a vertex u ∈ D, where dG(v) ≥ dG(u). The
subset D is a strong dominating set (sd-set) if every vertex v ∈ V − S is adjacent to
a vertex u ∈ D, where dG(u) ≥ dG(v). The weak (strong, respectively) domination
number γw(G) (γs(G), respectively) is the minimum cardinality of a wd-set (an sd-set,
respectively) of G. If D is an sd-set of G of size γs(G), then we call D a γs(G)-set.
Strong and weak domination have been studied for example in [1–4].

In their paper introducing weak and strong domination in graphs, Sampathkumar
and Pushpa Latha showed that a graph G of order n satisfies γw(G) +γs(G) ≤ n if G
is a d-balanced graph (G has an sd-set D1 and a wd-set D2 such that D1 ∩D2 = ∅).
However there exist graphs G for which γw(G) + γs(G) > n. For example if G is a
subdivided star SSq with q ≥ 3, then γw(SSq) = γs(SSq) = q + 1 = (n+ 1)/2.

2. RESULTS

We begin by giving an observation and two useful lemmas.

Observation 2.1. 1) For a cycle Cn we have γw(Cn) = γs(Cn) = dn/3e .
2) For a nontrivial path Pn we have

γs(Pn) = dn/3e and γw(Pn) =

{
dn/3e , if n ≡ 1(mod 3),
dn/3e+ 1, otherwise.

Lemma 2.2. Let G = (V,E) be a nontrivial connected graph. Then G has a γs(G)-set
D such that for every vertex x ∈ D having at least one neighbor in V −D, there is a
vertex y ∈ V −D adjacent to x such that dG(y) ≤ dG(x).

Proof. Among all γs(G)-sets let D be a one such vertex such that
∑

u∈D dG(u) is
maximum. Obviously the result is valid if |V | = 2. Hence let |V | ≥ 3 and assume
that D contains a vertex x such that N(x) ∩ (V −D) 6= ∅ and dG(y) > dG(x) for
every y ∈ N(x) ∩ (V −D) . Then {y} ∪ D − {x} = D′ is a γs(G)-set such that∑

u∈D′ dG(u) >
∑

u∈D dG(u), contradicting our choice of D.

Lemma 2.3. Let X be an independent set of a connected graph G such that every
vertex of X has degree at least three. Then:

(i) if G is a claw free graph, then 3 |X| ≤ 2 |N(X)|,
(ii) if G is a block graph, then 2 |X|+ 1 ≤ |N(X)|.

Proof. (i) Let E′ be the set of edges between X and N(X). Then 3 |X| ≤ |E′| . Also
since G is claw free and X is independent, every vertex of G has at most two neighbors
in X, implying that |E′| ≤ 2 |N(X)| . Therefore, 3 |X| ≤ |E′| ≤ 2 |N(X)|.

(ii) Assume now that G is a block graph and let A = N(X). Consider the graph
G[(X,A)] induced by the vertices of X and A. We can suppose that G[(X,A)] is
connected, for otherwise we can repeat the procedure below for each component. Let
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v1, v2, . . . , vt be the vertices of X and A1, A2, . . . , At the subsets of A ordering as
follow: A1 = N(v1)∩A and for 2 6 k 6 t, xk is a vertex of X adjacent to a vertex of
∪k−1

j=1Aj with Ak = N(vk)∩ (A−∪k−1
j=1Aj). Since every vertex of X has degree at least

three, we have |A1| > 3. Also, since G[(X,A)] is a connected block graph, each vertex
xk for k ≥ 2 has exactly one neighbor in ∪k−1

j=1Aj . Using this fact and the fact that
every vertex of X has degree at least three, it follows that |Ak| > 2 for 2 ≤ k ≤ t.
Therefore, |N(X)| = |A| = |A1|+ |A2|+ . . .+ |At| ≥ 3 + 2(t− 1) = 2 |X|+ 1.

Now we are ready to state our main result.

Theorem 2.4. Let G be a connected graph of order n ≥ 3 and maximum degree ∆.
Then γw(G) + 3γs(G)/(∆ + 1) ≤ n. Moreover,

(i) if G is a claw free graph, then γw(G) + 3γs(G)/5 ≤ n, and
(ii) if G is a block graph, then γw(G) + 2γs(G)/3 ≤ (3n− 1)/3.

Proof. Clearly since n ≥ 3, we have ∆ ≥ 2. If ∆ = 2, then G is either a cycle
Cn or a path Pn, and by Observation 2.1 the result holds. Thus we may assume
that ∆ ≥ 3. Let D be a γs(G)-set satisfying the conditions of Lemma 2.2. Let A =
{x ∈ D : N(x) ∩ (V − D) 6= ∅} and X = D − A. Observe that by our choice of
D, the set V − D weakly dominates A. If X = ∅, then A = D, and consequently,
γw(G) ≤ |V −D| = n− γs(G). Hence the result is valid even for (i) and (ii) when G
is claw free or a block graph, respectively. From now on we will assume that X 6= ∅. If
X contains two adjacent vertices u and v, then one of D−{u} or D−{v} is a strong
dominating set of G, a contradiction. Hence X is an independent set. Note that every
vertex of D has degree at least two, otherwise n = 2 or G is not connected. Also since
N(X) ⊆ A we have dG(u) ≥ 3 for every u ∈ X; otherwise D − {u} is an sd-set of G,
a contradiction. Now since V −D weakly dominates A, the set (V −D) ∪X weakly
dominates G, and therefore

γw(G) ≤ |(V −D) ∪X| = n− |D|+ |X| .

Now let us show how to bound |X| by |D| when G is an arbitrary graph, claw free,
or a block graph. Note that |D| = |X|+ |A| ≥ |X|+ |N(X)| . Let E(X,N(X)) be the
set of edges between X and N(X). Since dG(u) ≥ 3 for every u ∈ X and N(X) ⊂ D
we have 3 |X| ≤ |E(X,N(X))| . Also each vertex y of N(X) has degree at most ∆−1,
otherwise D − N(y) ∩ X would be an sd-set of G, a contradiction. It follows that
every vertex of N(X) has at most ∆ − 2 neighbors in X, thus |E(X,N(X))| ≤
(∆− 2) |N(X)| . This implies that 3 |X| ≤ |E(X,N(X))| ≤ (∆− 2) |N(X)|, and
consequently, |N(X)| ≥ 3 |X| /(∆ − 2). Since |D| ≥ |X| + |N(X)|, we obtain
|X| ≤ (∆− 2) |D| /(∆ + 1). Now we get γw(G) ≤ n− |D|+ |X| = n− 3 |D| /(∆ + 1).

Using Lemma 2.3, one can improve the previous result when G is a claw free graph
or a block graph. Hence we obtain (i) and (ii), respectively. We omit the details.
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Since the class of trees is contained in the class of block graphs we obtain the
following corollary.

Corollary 2.5. If T is a tree of order n ≥ 3, then γw(T ) + 2γs(T )/3 ≤ (3n− 1)/3.
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