SOME PROPERTIES OF SET-VALUED SINE FAMILIES

Ewelina Mainka-Niemczyk

Abstract. Let \(\{F_t: t \geq 0\} \) be a family of continuous additive set-valued functions defined on a convex cone \(K \) in a normed linear space \(X \) with nonempty convex compact values in \(X \). It is shown that (under some assumptions) a regular sine family associated with \(\{F_t: t \geq 0\} \) is continuous and \(\{F_t: t \geq 0\} \) is a continuous cosine family.

Keywords: set-valued sine and cosine families, continuity of sine families, Hukuhara differences, concave set-valued functions.

Mathematics Subject Classification: 26E25, 47H04, 47D09, 39B52.

1. INTRODUCTION

Our primary objective in this paper is to introduce some basic properties of families of set-valued functions satisfying the functional equation

\[G_{t+s}(x) = G_{t-s}(x) + 2F_t(G_s(x)), \]

which are called here sine families and refer to the trigonometric functional equation

\[g(t + s) - g(t - s) = 2f(t)g(s) \]

considered e.g. in [1, p. 138], [2, p. 365].

Sine families are strongly connected with cosine families, which have been considered by various authors. Cosine families of continuous linear operators were investigated e.g. in [4–7] and [16], whereas the set-valued case in [14], [10,11] and [12].

A set-valued regular sine family appeared (non-explicitly) in the paper [10] as a Hukuhara derivative of a cosine family of continuous additive set-valued functions.

2. PRELIMINARIES

Throughout the paper, we assume that all linear spaces are real. Let \(X \) be a normed linear space. \(n(X) \) denotes the set of all nonempty subsets of \(X \), whereas \(b(X) \) stands
for the set of all bounded members of $n(X)$ and $c(X)$ stands for the set of all compact members of $n(X)$. Moreover, by $bcl(X)$ we denote all closed members of $b(X)$, by $bccl(X)$ all convex members of $bcl(X)$ and by $cc(X)$ all convex members of $c(X)$.

By $B(x_0, r)$ we denote the open ball of the radius r centered at a point x_0.

A subset K of the space X is called a cone if $tK \subset K$ for all $t \in [0, \infty)$. We say that a cone is convex if it is a convex set.

Let K be a convex cone in X. Assume that $\{F_t : t \geq 0\}$ is a family of set-valued functions $F_t : K \to n(X), t \geq 0$.

A family $\{G_t : t \geq 0\}$ of set-valued functions $G_t : K \to n(K), t \geq 0$, is called a sine family associated with the family $\{F_t : t \geq 0\}$, if

$$G_{t+s}(x) = G_{t-s}(x) + 2F_t(G_s(x))$$ \hspace{1cm} (2.1)

for $0 \leq s \leq t$ and $x \in K$, where $F_t(G_s(x)) := \bigcup\{F_t(y) : y \in G_s(x)\}$.

Example 2.1. Let $K = [0, \infty)$, $G_t(x) = \{\sin t\}$ and $F_t(x) = \{\cos t\}$ for $t \geq 0$. Then $\{G_t : t \geq 0\}$ is a sine family associated with the family $\{F_t : t \geq 0\}$.

Example 2.2. Let $K = [0, \infty)$, $G_t(x) = \{0, \sinh |x|\}$ and $F_t(x) = \{1, \cosh |x|\}$ for $t \geq 0$. Then $\{G_t : t \geq 0\}$ is a sine family associated with the family $\{F_t : t \geq 0\}$.

A family $\{F_t : t \geq 0\}$ of set-valued functions $F_t : K \to n(K), t \geq 0$, is called a cosine family, if

$$F_0(x) = \{x\}$$ \hspace{1cm} (2.2)

for all $x \in K$ and

$$F_{t+s}(x) + F_{t-s}(x) = 2F_t(F_s(x))$$ \hspace{1cm} (2.3)

whenever $0 \leq s \leq t$ and $x \in K$.

Take a set-valued function $\phi : K \to n(Y)$, where Y is a normed linear space. We say that ϕ is lower semi-continuous at a point $t_0 \in K$ if for every neighbourhood V of zero in Y there exists a neighbourhood U of zero in X such that

$$\phi(t_0) \subset \phi(t) + V$$

for all $t \in (t_0 + U) \cap K$. We say that ϕ is upper semi-continuous at a point $t_0 \in K$ if for every neighbourhood V of zero in Y there exists a neighbourhood U of zero in X such that

$$\phi(t) \subset \phi(t_0) + V$$

for all $t \in (t_0 + U) \cap K$. ϕ is continuous at $t_0 \in K$ if it is both lower semi-continuous and upper semi-continuous at t_0. It is continuous on K if it is continuous at each point of K. It is easy to prove that a set-valued function $\phi : K \to bcl(Y)$ is continuous if and only if a single valued function $K \ni x \mapsto \phi(x) \in bcl(Y)$ is continuous with respect to the Hausdorff metric derived from the norm in Y.

A sine family $\{G_t : t \geq 0\}$ is continuous if the function $t \mapsto G_t(x)$ is continuous for every $x \in K$.

A set-valued function $F : K \to n(X)$ is said to be additive if

$$F(x + y) = F(x) + F(y)$$ \hspace{1cm} (2.4)
for all \(x, y \in X \). \(F \) is linear if (2.4) holds true and it is homogeneous, i.e.

\[
F(\lambda x) = \lambda F(x)
\]

for all \(x \in K, \lambda \geq 0 \). An additive and continuous set-valued function with values in \(cc(X) \) is linear (cf. Theorem 5.3 in [9]). We say \(F \) is midconcave if

\[
F\left[\frac{1}{2}(x + y)\right] \subset \frac{1}{2}[F(x) + F(y)]
\]

for all \(x, y \in K \) (cf. [9]).

Proposition 2.3. Let \(X \) be a normed linear space and let \(K \) be a convex cone in \(X \). Assume that \(\{ F_t : t \geq 0 \} \) is a family of set-valued functions \(F_t : K \to n(X) \), such that \(F_0 \) is upper semi-continuous linear with compact values and \(x \in F_0(x) \) for \(x \in K \). If \(\{ G_t : t \geq 0 \} \) is a sine family associated with the family \(\{ F_t : t \geq 0 \} \) and \(G_0(x) \in cc(K) \) for \(x \in K \), then \(G_0(x) = \{ 0 \} \) for \(x \in K \).

Indeed, putting \(t = 0 \) and \(s = 0 \) in (2.1), by the cancellation law (cf. [13]) we obtain the equality \(\{ 0 \} = F_0(G_0(x)) \), \(x \in K \). Since \(y \in F_0(y) \) for all \(y \in K \), this equality yields \(G_0(x) = \{ 0 \} \) for \(x \in K \).

A family \(\{ G_t : t \geq 0 \} \) is increasing if \(G_s(x) \subset G_t(x) \) for every \(x \in K \) and \(0 \leq s \leq t \).

The two following propositions are easy to prove.

Proposition 2.4. Let \(X \) be a normed linear space and let \(K \) be a convex cone in \(X \). Assume that \(\{ F_t : t \geq 0 \} \) is a family of set-valued functions \(F_t : K \to n(X) \), such that \(x \in F_t(x) \) for \(x \in K \), \(t \geq 0 \). If \(\{ G_t : t \geq 0 \} \) is a sine family associated with the family \(\{ F_t : t \geq 0 \} \), then the inclusion

\[
G_u(x) + 2G_v(x) \subset G_{u + 2v}(x)
\]

holds for every \(u, v \geq 0, x \in K \).

Proposition 2.5. Let \(X \) be a normed linear space and let \(K \) be a convex cone in \(X \). If a family \(\{ G_t : t \geq 0 \} \) of set-valued functions \(G_t : K \to n(X) \), such that \(0 \in G_t(x) \) for \(t \geq 0, x \in K \), fulfils inclusion (2.6), then it is increasing.

Let \(\{ F_t : t \geq 0 \} \) be a family of set-valued functions \(F_t : K \to n(K) \). We write

\[
\lim_{t \to 0^+} F_t(x) = \{ x \}
\]

if

\[
\lim_{t \to 0^+} d(F_t(x), \{ x \}) = 0,
\]

where \(d \) is the Hausdorff distance derived from the norm in \(X \).

A cosine family \(\{ F_t : t \geq 0 \} \) is regular if the above equality is satisfied for each \(x \in K \) (cf. [14]).

A sine family \(\{ G_t : t \geq 0 \} \) is regular if \(\lim_{t \to 0^+} \frac{G_t(x)}{t} = \{ x \} \).

Example 2.6. Let \(K = (-\infty, \infty) \) and \(F_t(x) = [1, \cosh t]x \) for \(t \geq 0 \). Then \(\{ F_t : t \geq 0 \} \) is a regular cosine family.
The sine family from Example 2.1 is regular, whereas the sine family given in Example 2.2 is not regular. Indeed, since \(\lim_{t \to 0^+} \frac{\sin t}{t} = 1 \) and \(\lim_{t \to 0^+} \frac{\sinh t}{t} = 1 \) we have

\[
\lim_{t \to 0^+} \frac{\{x \sin t\}}{t} = \{x\}
\]

and

\[
\lim_{t \to 0^+} \frac{[0, \sinh t] \cdot x}{t} = [0, x].
\]

Let \(A, B, C \) be sets of \(cc(X) \). We say that a set \(C \) is the Hukuhara difference of \(A \) and \(B \), i.e., \(C = A - B \) if \(B + C = A \). If this difference exists, then it is unique (see Lemma 1 in [13]).

The next lemma follows directly from the definition of Hukuhara difference.

Lemma 2.7. Let \(X \) be a normed linear space and let \(A, B, C, D \) be sets of \(cc(X) \). Then:

(a) \(A - A \) exists and \(A - A = \{0\} \);
(b) \(A - \{0\} \) exists and \(A - \{0\} = A \);
(c) if the differences \(A - C, C - D, D - B \) exist, then the differences \(A - B, (A - B) - (C - D) \) exist and \((A - B) - (C - D) = (A - C) + (D - B) \).

From the definition of a sine family we obtain

Lemma 2.8. Let \(X \) be a normed linear space, \(K \) be a convex cone in \(X \) and let \(G_t : K \to cc(K), F_t : K \to cc(X) \) for \(t \geq 0 \). If \(\{G_t : t \geq 0\} \) is a sine family associated with the family \(\{F_t : t \geq 0\} \), then for all \(u, v \in [0, \infty) \) with \(u \leq v \) and all \(x \in K \) there exist Hukuhara differences

\[
G_v(x) - G_u(x).
\]

In the next section we will make use of the following lemma.

Lemma 2.9 ([15, Lemma 3]). Let \(X \) be a normed linear space and \(K \) be a convex cone in \(X \). Assume that \(F : K \to cc(K) \) is a continuous additive set-valued function and \(A, B \in cc(K) \). If there exists the difference \(A - B \), then there exists \(F(A) - F(B) \) and \(F(A) - F(B) = F(A - B) \).

3. MAIN RESULTS

We give some interesting properties of sine families, in particular continuity and a connection with cosine families.

Theorem 3.1. Let \(X \) be a normed linear space and \(K \) be a convex cone in \(X \). Assume that \(\{F_t : t \geq 0\} \) is a family of upper semi-continuous at zero set-valued functions \(F_t : K \to n(X), t \geq 0 \), such that \(x \in F_t(x) \) for \(x \in K, t \geq 0 \), \(F_0 \) is upper semi-continuous linear with compact values and \(F_t(0) = \{0\} \) for \(t \geq 0 \). Then a sine family \(\{G_t : t \geq 0\} \) of set-valued functions \(G_t : K \to b(K) \) associated with the family \(\{F_t : t \geq 0\} \), such that \(G_0 \) has convex compact values and \(0 \in G_t(x) \) for \(x \in K, t \geq 0 \) is continuous.
Proof. Let us fix \(x \in K \) arbitrarily and put \(\phi(t) := G_t(x) \). From (2.6) we have
\[
\phi(u) + 2\phi(v) \subset \phi(u + 2v)
\]
for \(u \geq 0, v \geq 0 \). Putting \(u = v \) we get
\[
3\phi(u) \subset \phi(3u),
\]
and therefore
\[
\phi\left(\frac{u}{3}\right) \subset \frac{1}{3}\phi(u).
\]
Thus
\[
\phi\left(\frac{u}{3^n}\right) \subset \frac{1}{3^n}\phi(u)
\]
for \(u \geq 0 \) and \(n \in \mathbb{N} \). Taking \(u = 1 \) we obtain \(\phi\left(\frac{1}{3^n}\right) \subset \frac{1}{3^n}\phi(1) \) for \(n \in \mathbb{N} \). Let \(\varepsilon > 0 \). There exists \(n \in \mathbb{N} \) such that \(\frac{1}{3^n}\phi(1) \subset B(0, \varepsilon) \). By the monotonicity of \(\phi \)
\[
\phi(w) \subset B(0, \varepsilon)
\]
for \(0 \leq w < \frac{1}{3^n} \). Since \(\phi(0) = \{0\} \) (Proposition 2.3), \(\phi \) is upper semi-continuous at 0.

Let us fix \(u \in (0, \infty) \) arbitrarily. We shall prove that \(\phi \) is upper semi-continuous at \(u \). It is easily seen, that it suffices to show that \(\phi \) is upper semi-continuous on the right. Suppose that \(V \) is a neighbourhood of zero in \(X \). Setting \(t = u \) in (2.1) and using the monotonicity of \(\phi \), we obtain
\[
\phi(u + s) = \phi(u - s) + 2F_u(\phi(s)) \subset \phi(u) + 2F_u(\phi(s))
\]
for all \(s \in (0, u) \). Since \(F_u \) is upper semi-continuous at 0 and \(F_u(0) = \{0\} \), there exists \(\varepsilon > 0 \) such that
\[
F_u(y) \subset \frac{1}{2} V
\]
for \(y \in B(0, \varepsilon) \cap K \). By (3.1) there is some positive integer \(n \) such that
\[
F_u(\phi(s)) \subset \frac{1}{2} V \quad \text{for} \quad s \in \left[0, \frac{1}{3^n}\right).
\]
Hence, for \(w \in (u, u + \frac{1}{3^n}) \) we have
\[
\phi(w) \subset \phi(u) + V,
\]
which shows that \(\phi \) is upper semi-continuous at \(u \).

Now it remains to show that \(\phi \) is lower semi-continuous. Let us fix \(u \in [0, \infty) \).
It is easily seen, that it suffices to show that \(\phi \) is lower semi-continuous on the left at \(u \in (0, \infty) \). Let us fix a neighbourhood \(V \) of zero in \(X \). Using (3.2) and the monotonicity of \(\phi \), we get
\[
\phi(u) \subset \phi(u + s) = \phi(u - s) + 2F_u(\phi(s))
\]
for all \(s \in (0, u) \). A similar reasoning as before shows that there is some positive integer \(n \) such that \(\phi(u) \subset \phi(w) + V \), for all \(w \in (u - \frac{1}{3^n}, u) \), thus \(\phi \) is lower semi-continuous in \(u \). This completes the proof. \(\square \)
Lemma 3.2. Let X be a normed linear space, K be a convex cone in X, $G_t: K \rightarrow \text{cc}(K)$, $F_t: K \rightarrow \text{cc}(X)$, $t \geq 0$ and let F_0 be upper semi-continuous linear. If $\{G_t : t \geq 0\}$ is a regular sine family associated with the family $\{F_t : t \geq 0\}$ and $x \in F_t(x)$, $x \in K$, $t \geq 0$, then
\[x \in G_s(x) \] (3.3)
for all $x \in K$ and $s > 0$.

Proof. From (2.1), Proposition 2.3 and by $x \in F_t(x)$ we have
\[G_s(x) = G_0(x) + 2F_s(G_2(x)) \supset 2G_2(x), \]
thus
\[\frac{G_s(x)}{s} \subset \frac{G_s(x)}{s} \quad \text{for } n \in \mathbb{N}. \]
Regularity of $\{G_t : t \geq 0\}$ implies
\[\frac{G_s(x)}{s} \rightarrow \{x\} \quad \text{as } n \rightarrow \infty, \]
therefore
\[x \in \frac{G_s(x)}{s} \]
for all $x \in K$ and $s > 0$. \qed

Theorem 3.3. Let X be a normed linear space and K be a convex cone in X. Assume that $\{F_t : t \geq 0\}$ is a family of upper semi-continuous at zero additive set-valued functions $F_t: K \rightarrow \text{cc}(X)$, $t \geq 0$, such that $x \in F_t(x)$ for $x \in K$, $t \geq 0$ and F_0 is upper semi-continuous linear. If a sine family $\{G_t : t \geq 0\}$ of set-valued functions $G_t: K \rightarrow \text{cc}(K)$ associated with the family $\{F_t : t \geq 0\}$ is regular, then it is continuous.

Proof. Let us fix $x \in K$ arbitrarily and put $\psi(t) := G_t(x) - tx$, $t \geq 0$. Then $0 \in \psi(x)$, $t \geq 0$. Indeed, by Lemma 3.2 and Proposition 2.3 we have
\[tx \in G_t(x) \]
for $t \geq 0$. Hence
\[0 \in G_t(x) - tx = \psi(t), \quad t \geq 0. \]
From (2.6) we have
\[\psi(u) + 2\psi(v) = G_u(x) - ux + 2G_v(x) - 2vx = \]
\[= G_u(x) + 2G_u(x) - (u + 2v)x \subset G_u+2v(x) - (u + 2v)x = \psi(u + 2v), \]
i.e.,
\[\psi(u) + 2\psi(v) \subset \psi(u + 2v) \]
for \(u \geq 0, v \geq 0 \). In the same way as in the proof of Theorem 3.1 we obtain that for each \(\varepsilon > 0 \) there is \(n \in \mathbb{N} \) such that
\[
\psi(w) \subset B(0, \varepsilon)
\] (3.4)
for all \(w \in [0, \frac{1}{3n}) \), and that \(\psi \) is upper semi-continuous at 0.

Let us fix \(u \in (0, \infty) \) arbitrarily. We shall prove that \(\psi \) is upper semi-continuous at \(u \). Since \(\psi \) is increasing (Proposition 2.5), it suffices to show that \(\psi \) is upper semi-continuous on the right at \(u \). Suppose that \(V \) is a symmetric convex neighbourhood of zero in \(X \). Setting \(t = u \) in (2.1) we obtain
\[
\psi(u + s) = G_{u+s}(x) - (u + s)x = [G_{u-s}(x) - (u-s)x] + 2F_u(G_s(x)) - 2sx = \\
= \psi(u - s) + 2F_u(\psi(s) + sx) - 2sx = \\
= \psi(u - s) + 2F_u(\psi(s)) + 2F_u(sx) - 2sx
\]
i.e.,
\[
\psi(u + s) = \psi(u - s) + 2F_u(\psi(s)) + 2F_u(sx) - 2sx
\] (3.5)
for all \(s \in (0, u) \). Hence, by the monotonicity of \(\psi \)
\[
\psi(u + s) \subset \psi(u) + 2F_u(\psi(s)) + 2F_u(sx) - 2sx
\]
for \(s \in (0, u) \). Since \(F_u \) is upper semi-continuous at zero and \(F_u(0) = \{0\} \), there exists \(\varepsilon > 0 \) such that
\[
F_u(y) \subset \frac{1}{6}V
\]
for \(y \in B(0, \varepsilon) \cap K \). By (3.4) there is some positive integer \(n \) such that
\[
F_u(\psi(s)) \subset \frac{1}{6}V \quad \text{for} \quad s \in \left[0, \frac{1}{3n}\right).
\]
Moreover, we can assume that \(n \) is large enough in order that
\[
F_u(sx) \subset \frac{1}{6}V, \quad sx \in \frac{1}{6}V
\]
for \(s \in \left[0, \frac{1}{3n}\right) \). Hence, for \(w \in (u, u + \frac{1}{3n}) \) we have
\[
\psi(w) \subset \psi(u) + V,
\]
which shows that \(\psi \) is upper semi-continuous at \(u \).

It remains to show that \(\psi \) is lower semi-continuous. Let us fix \(u \in [0, \infty) \). It is easily seen, that it suffices to show that \(\psi \) is lower semi-continuous on the left at \(u \in (0, \infty) \). Let us fix a symmetric convex neighbourhood \(V \) of zero in \(X \). Using the monotonicity of \(\psi \) and (3.5), we get
\[
\psi(u) \subset \psi(u + s) = \psi(u - s) + 2F_u(\psi(s)) + 2F_u(sx) - 2sx
\]
for all \(s \in (0, u) \). A similar reasoning as before shows that there is a positive integer \(n \) such that \(\psi(u) \subset \psi(w) + V \) for all \(w \in \left(u - \frac{1}{3n}, u\right) \). Therefore \(\psi \) is lower semi-continuous in \(u \), which completes the proof.
Remark 3.4. Let X be a normed linear space, K be a convex cone in X, $G_t: K \to \text{cc}(K)$, $F_t: K \to \text{cc}(X)$ for $t \geq 0$. If $\{G_t : t \geq 0\}$ is a regular sine family associated with the family $\{F_t : t \geq 0\}$ and all F_t are continuous and additive, then the family $\{F_t : t \geq 0\}$ is unique.

Assume that $\{F_t : t \geq 0\}$ and $\{H_t : t \geq 0\}$ are two families of continuous and additive set-valued functions such that

$$G_{t+s}(x) = G_{t-s}(x) + 2F_t(G_s(x))$$

and

$$G_{t+s}(x) = G_{t-s}(x) + 2H_t(G_s(x)).$$

Then

$$G_{t-s}(x) + 2F_t(G_s(x)) = G_{t-s}(x) + 2H_t(G_s(x))$$

and by the cancellation law $F_t(G_s(x)) = H_t(G_s(x))$ for all $0 \leq s \leq t$. Using (2.5) we get

$$F_t\left(\frac{G_s(x)}{s}\right) = H_t\left(\frac{G_s(x)}{s}\right).$$

Letting s tend to 0 from the right, by regularity of $\{G_t : t \geq 0\}$ we obtain

$$F_t(x) = H_t(x).$$

Example 3.5. Let $K = [0, \infty)$, $G_t(x) = t[0, x]$, $F_t(x) = \{x\}$ and $H_t(x) = [0, x]$ for $t \geq 0$, $x \in K$. Then $\{G_t : t \geq 0\}$ is a sine family associated with the family $\{F_t : t \geq 0\}$ and with the family $\{H_t : t \geq 0\}$.

Indeed, we have

$$G_{t+s}(x) = (t + s)[0, x] = (t - s)[0, x] + 2s[0, x] = G_{t-s}(x) + 2G_s(x) = G_{t-s}(x) + 2F_t(G_s(x))$$

and

$$G_{t+s}(x) = (t + s)[0, x] = (t - s)[0, x] + 2s[0, x] = G_{t-s}(x) + 2H_t(s[0, x]) = G_{t-s}(x) + 2H_s(G_s(x)).$$

Observe that all F_t and H_t are continuous and additive, but the sine family $\{G_t : t \geq 0\}$ is not regular, since

$$\lim_{t \to 0^+} \frac{G_t(x)}{t} = [0, x].$$

Theorem 3.6. Let X be a real normed additive space, K a convex cone in X and let $\{F_t : t \geq 0\}$ be a family of continuous additive set-valued functions $F_t: K \to \text{cc}(K)$, such that $F_0(x) = \{x\}$, $x \in K$. Assume that $\{G_t : t \geq 0\}$ is a regular sine family of set-valued functions $G_t: K \to \text{cc}(K)$ associated with the family $\{F_t : t \geq 0\}$. Then:

(a) $\{F_t : t \geq 0\}$ is a cosine family.
Some properties of set-valued sine families

167

(b) if moreover

\[x \in F_t(x) \] (3.6)

for \(x \in K \) and \(t \geq 0 \), then \(\{F_t : t \geq 0\} \) is a continuous cosine family. In particular it is regular.

Proof. (a) Let us take \(s, u, v \) such that \(0 \leq s \leq v - u \), \(0 \leq s \leq u \) and \(0 \leq u \leq v \). From (2.1) we get

\[
G_{v+u+s}(x) = G_{v+u-s}(x) + 2F_{v+u}(G_s(x)), \\
G_{v-u+s}(x) = G_{v-u-s}(x) + 2F_{v-u}(G_s(x)), \\
G_{v+u-s}(x) = G_{v-u-s}(x) + 2F_v(G_{u+s}(x)), \\
G_{v+u-s}(x) = G_{v-u-s}(x) + 2F_v(G_{u-s}(x)),
\]

for all \(x \in K \). By Lemma 2.7 and Lemma 2.9, we have therefore

\[
2F_v(2F_u(G_s(x))) = 2F_v(G_{u+s}(x) - G_{u-s}(x)) = 2F_v(G_{u+s}(x)) - 2F_v(G_{u-s}(x)) = \\
= [G_{v+u+s}(x) - G_{v-u+s}(x)] - [G_{v+u-s}(x) - G_{v-u-s}(x)] = \\
= [G_{v+u+s}(x) - G_{v+u-s}(x)] + [G_{v-u+s}(x) - G_{v-u-s}(x)] = \\
= 2F_{v+u}(G_s(x)) + 2F_{v-u}(G_s(x)).
\]

Since \(F_t \) are linear, we can write

\[
2F_v\left(F_u\left(\frac{G_s(x)}{s}\right)\right) = F_{v+u}\left(\frac{G_s(x)}{s}\right) + F_{v-u}\left(\frac{G_s(x)}{s}\right).
\]

Letting \(s \) tend to 0 we obtain from continuity of \(F_t \)

\[
2F_v(F_u(x)) = F_{v+u}(x) + F_{v-u}(x).
\]

(b) The proof will be divided into three steps.

Step 1. From (2.3) and (3.6) follows the inclusion

\[
F_{t+s}(x) + F_{t-s}(x) \supset 2F_t(x)
\]

for \(0 \leq s \leq t \), which implies that set-valued functions \(u \mapsto F_u(x) \ (x \in K) \) are midconcave in \([0, \infty)\) (cf. [11, the proof of Theorem 3]).

For fixed \(s > 0 \) and \(t > 0 \) from (2.1) and Lemma 3.2 we obtain

\[
F_t(x) \subset F_t\left(\frac{G_s(x)}{s}\right) = \frac{G_{t+s}(x) - G_{t-s}(x)}{2s}
\]

for all \(x \in K \). Since set-valued functions

\[
t \mapsto \frac{G_{t+s}(x) - G_{t-s}(x)}{2s}
\]

are continuous in \((s, \infty)\) (cf. Theorem 3.3), from Theorem 4.3 in [9] set-valued functions

\[
t \mapsto F_t(x)
\]
for \(x \in K \) are continuous in \((s, \infty)\), thus also in \((0, \infty)\). Continuity and midconcavity of set-valued functions \(t \mapsto F_t(x) \) imply their concavity, i.e.,

\[
F_{\lambda t+(1-\lambda)s}(x) \subset \lambda F_t(x) + (1-\lambda)F_s(x), \quad \lambda \in [0, 1], \; s, t > 0, \; x \in K
\]

(cf. Theorem 4.1 in [9]). We get therefore convexity of functions

\[
\psi(t) := \text{diam}(F_t(x))
\]
in \((0, \infty)\) for all \(x \in K \).

Indeed, let \(\lambda \in [0, 1] \) and \(s, t \in (0, \infty) \). By the concavity of the functions \(t \mapsto F_t(x) \) we have

\[
\psi(\lambda t + (1-\lambda)s) = \text{diam}[F_{\lambda t+(1-\lambda)s}(x)] \leq \text{diam}[\lambda F_t(x) + (1-\lambda)F_s(x)] \leq \\
\leq \text{diam}[\lambda F_t(x)] + \text{diam}[(1-\lambda)F_s(x)] = \\
= \lambda \text{diam}[F_t(x)] + (1-\lambda)\text{diam}[F_s(x)] = \lambda \psi(t) + (1-\lambda)\psi(s).
\]

Step 2. For \(t > 0 \) and \(x \in K \) we have

\[
F_t(x) + x = 2F_{\frac{1}{2}}(x).
\]

From (3.6) we obtain

\[
F_t(x) + x = F_{\frac{2}{2}}(x) + F_{\frac{2}{2}}(x) \supset F_{\frac{1}{2}}(x) + x,
\]
and therefore

\[
F_{\frac{1}{2}}(x) \subset F_t(x).
\]

Hence the sequence \((F_{\frac{1}{2^n}}(x)) \) is descending. Put

\[
H_t(x) := \bigcap_{n=0}^{\infty} F_{\frac{1}{2^n}}(x).
\]

From the inclusion

\[
F_{\frac{1}{2^n}}(x) + x = 2F_{\frac{2}{2^n}}(x) \supset F_{\frac{1}{2^n}}(x) + F_{\frac{1}{2^n}}(x) \supset 2H_t(x)
\]

and Lemma 2 in [8] it follows that

\[
H_t(x) + x = \bigcap_{n=0}^{\infty} F_{\frac{1}{2^n}}(x) + x = \bigcap_{n=0}^{\infty} [F_{\frac{1}{2^n}}(x) + x] \supset 2H_t(x).
\]

Therefore, by the cancellation law we get

\[
H_t(x) = \{x\}.
\]
for $t > 0$ and $x \in K$. Thus $\lim_{n \to \infty} F_{\frac{t}{2^n}}(x) = \{x\}$ (cf. Lemma 3 in [8]), whence $\lim_{n \to \infty} \psi\left(\frac{t}{2^n}\right) = 0$. Since ψ is convex, we have

$$\lim_{s \to 0^+} \psi(s) = 0.$$

Step 3. Fix $\varepsilon > 0$. There is $\eta > 0$ such that

$$\psi(s) < \varepsilon \quad \text{for} \quad s \in (0, \eta).$$

Let $s \in (0, \eta)$ and $y \in F_s(x)$. We have then

$$\|y - x\| \leq \text{diam}(F_s(x)) = \psi(s) < \varepsilon.$$

Hence

$$F_s(x) \subset B(x, \varepsilon)$$

and

$$\lim_{s \to 0^+} F_s(x) = \{x\}. \quad \square$$

Acknowledgements

The author thanks Dr Magdalena Piszczek for her remarks which improved Theorem 3.6.

REFERENCES

Ewelina Mainka-Niemczyk
ewelina.mainka@polsl.pl

Silesian University of Technology
Institute of Mathematics
Kaszubska 23, 44-100 Gliwice, Poland

Received: November 2, 2010.
Revised: February 2, 2011.
Accepted: March 5, 2011.