GLOBAL OFFENSIVE k-ALLIANCE IN BIPARTITE GRAPHS

Mustapha Chellali and Lutz Volkmann

Abstract. Let $k \geq 0$ be an integer. A set S of vertices of a graph $G = (V(G), E(G))$ is called a global offensive k-alliance if $|N(v) \cap S| \geq |N(v) - S| + k$ for every $v \in V(G) - S$, where $0 \leq k \leq \Delta$ and Δ is the maximum degree of G. The global offensive k-alliance number $\gamma^k_o(G)$ is the minimum cardinality of a global offensive k-alliance in G. We show that for every bipartite graph G and every integer $k \geq 2$, $\gamma^k_o(G) \leq n(G) + |L_k(G)|$, where $L_k(G)$ is the set of vertices of degree at most $k - 1$. Moreover, extremal trees attaining this upper bound are characterized.

Keywords: global offensive k-alliance number, bipartite graphs, trees.

Mathematics Subject Classification: 05C69.

1. INTRODUCTION

We begin with some terminology. For a vertex v of a graph $G = (V, E) = (V(G), E(G))$, the open neighborhood of a vertex $v \in V$ is $N(v) = \{u \in V \mid uv \in E\}$ and the closed neighborhood is $N[v] = N(v) \cup \{v\}$. The degree of v, denoted by $\deg_G(v)$, is $|N(v)|$. By $n(G)$ and $\Delta(G) = \Delta$ we denote the order and the maximum degree of the graph G, respectively. Specifically, for a vertex v in a rooted tree T, we denote by $C(v)$ and $D(v)$ the set of children and descendants, respectively, of v, and we define $D[v] = D(v) \cup \{v\}$. The maximal subtree at v is the subtree of T induced by $D[v]$, and is denoted by T_v.

In [3] Kristiansen, Hedetniemi, and Hedetniemi introduced several types of alliances in graphs, including defensive and offensive alliances. We are interested in a generalization of offensive alliances, namely global offensive k-alliances given by Shafique and Dutton [4, 5]. Let $k \geq 0$ be an integer. A set S of vertices of a graph G is called a global offensive k-alliance if $|N(v) \cap S| \geq |N(v) - S| + k$ for every $v \in V(G) - S$ for $0 \leq k \leq \Delta$. The global offensive k-alliance number $\gamma^k_o(G)$ is the minimum cardinality of a global offensive k-alliance in G. If S is a global offensive k-alliance of G and $|S| = \gamma^k_o(G)$, then we say that S is a $\gamma^k_o(G)$-set. A global offensive
1-alliance is a global offensive alliance and a global offensive 2-alliance is a global strong offensive alliance.

In this paper, we show that for every bipartite graph G and every integer $k \geq 1$, $\gamma^k_o(G) \leq \frac{n(G) + |L_k(G)|}{2}$, where $L_k(G) = \{x \in V(G) : \deg_G(x) \leq k - 1\}$. Moreover, extremal trees attaining the upper bound are characterized for $k \geq 2$.

2. MAIN RESULTS

Theorem 2.1. Let $k \geq 1$ be an integer. If G is a bipartite graph, then

$$\gamma^k_o(G) \leq \frac{n(G) + |L_k(G)|}{2}. \quad \Box$$

Proof. Let G be a bipartite graph. Clearly, $L_k(G)$ is contained in every $\gamma^k_o(G)$-set. Let H be the graph obtained from G by removing $L_k(G)$. If H is empty, then the result is valid. Thus we assume now that $n(H) \geq 1$, and so H admits a bipartition A, B, where $A = \emptyset$ or $B = \emptyset$ is possible. Every vertex of A (resp., B) has at least k neighbors in $B \cup L_k(G)$ (resp., $A \cup L_k(G)$). It follows that each of $A \cup L_k(G)$ and $B \cup L_k(G)$ is a global offensive k-alliance of G and so

$$\gamma^k_o(G) \leq \min\{|A \cup L_k(G)|, |B \cup L_k(G)|\} \leq \frac{n(G) - |L_k(G)|}{2} + |L_k(G)| = \frac{n(G) + |L_k(G)|}{2}. \quad \Box$$

The case $k = 2$ in Theorem 2.1 leads to the next result.

Corollary 2.2 ([2]). If G is a bipartite graph, then

$$\gamma^2_o(G) \leq \frac{n(G) + |L_2(G)|}{2}. \quad \Box$$

For a positive integer k, a set of vertices D in a graph G is said to be a k-dominating set if each vertex of G not contained in D has at least k neighbors in D. The order of a smallest k-dominating set of G is called the k-domination number, and it is denoted by $\gamma_k(G)$. Clearly, if S is any $\gamma^k_o(G)$-set, then every vertex of $V(G) - S$ has at least k neighbors in S. Thus S is a k-dominating set of G, and hence $\gamma_k(G) \leq \gamma^k_o(G)$. Using this fact, Theorem 2.1 implies the following corollary.

Corollary 2.3 ([1]). Let $k \geq 1$ be an integer. If G is a bipartite graph, then

$$\gamma_k(G) \leq \frac{n(G) + |L_k(G)|}{2}. \quad \Box$$

In [1], Bilidia, Chellali and Volkmann defined the following trees. For a positive integer p, a nontrivial tree T is called an N_p-tree if T contains a vertex, say w, of degree at least $p - 1$ and $\deg_T(x) \leq p - 1$ for every vertex of $x \in V(T) - \{w\}$. We will call w the special vertex of T. An N_p-tree with special vertex w is called exact if $\deg_T(w) = p - 1$. The subdivided star $K_{1,p}$ ($p \geq 1$) is an example of an N_p-tree.
In order to characterize extremal trees achieving equality in Theorem 2.1 we define the family \mathcal{F}_k of all trees T that can be obtained from a sequence T_1, T_2, \ldots, T_p ($p \geq 1$) of trees, where T_1 is an exact N_k-tree, $T = T_p$, and, if $p \geq 2$, T_{i+1} can be obtained recursively from T_i by one of the two operations listed below.

- Operation O_1: Attach an N_k-tree of special vertex w of degree at least $k + 1$ by adding an edge from w to a vertex u of T_i of degree exactly $k - 1$, and adding at most one new tree, all vertices of degree at most $k - 1$ and join a vertex of degree at most $k - 2$ with u by an edge.
- Operation O_2: Attach an N_k-tree of special vertex w of degree k or $k - 1$ by adding an edge from w to a vertex u of T_i of degree exactly $k - 1$, and adding t ($t \geq 0$) new trees, all vertices of degree at most $k - 1$ and join a vertex of degree at most $k - 2$ of each new tree with u by an edge.

We state a lemma.

Lemma 2.4. If $T \in \mathcal{F}_k$, then $\gamma_k^b(T) = \left(n(T) + |L_k(T)| \right) / 2$.

Proof. Assume that $T \in \mathcal{F}_k$. Clearly, $\Delta(T) \geq k - 1$ and T is obtained from a sequence T_1, T_2, \ldots, T_p ($p \geq 1$) of trees, where T_1 is an exact N_k-tree, $T = T_p$, and, if $p \geq 2$, T_{i+1} can be obtained recursively from T_i by one of the two operations defined above. We will use an induction on p. If $p = 1$, then T is an exact N_k-tree where $\gamma_k^b(T) = |L_k(T)| = n(T)$ and so $\gamma_k^b(T) = \left(n(T) + |L_k(T)| \right) / 2$.

Assume now that $p \geq 2$ and that the result holds for all trees $T \in \mathcal{F}_k$ that can be constructed from a sequence of length at most $p - 1$, and let $T' = T_{p-1}$. By the inductive hypothesis on $T' \in \mathcal{F}_k$, we have $\gamma_k^b(T') = \left(n(T') + |L_k(T')| \right) / 2$. Let T be a tree obtained from T' and S a $\gamma_k^b(T)$-set. We consider the following two cases.

Case 1. T is obtained from T' by using operation O_1.

Let H be the N_k-tree of special vertex w of degree at least $k + 1$ added to T' and let Q be the new tree of maximum degree at most $k - 1$ that can possibly be added to T'. Clearly $n(T) = n(T') + n(H) + n(Q)$ and $|L_k(T)| = |L_k(T')| + |V(H)| + |V(Q)| - 2$. Then S contains all vertices of Q, H except possibly w. If $w \in S$, then $u \notin S$ otherwise $S - \{u\}$ is a global offensive k-alliance of T, contradicting the minimality of S, but then $\{u\} \cup S - \{w\}$ is a $\gamma_k^b(T)$-set that contains u and not w. Now if $w \notin S$, then $u \in S$ otherwise since $k \leq \deg_T(u) \leq k + 1$, $k \geq |N(u) \cap S| \geq |N(u) - S| + k \geq 1 + k$, which is impossible. Thus we may assume without loss of generality that $u \in S$ and $w \notin S$. Now let $S' = S \cap V(T')$. Since S is a $\gamma_k^b(T)$-set, every vertex of $z \in V(T') - S'$ satisfies $|N(z) \cap S'| \geq |N(z) - S'| + k$ and hence S' is a global offensive k-alliance of T', implying that $\gamma_k^b(T') \leq \gamma_k^b(T) - |V(H)| - |V(Q)| + 1$. Now since $\deg_T(u) = k - 1$, u is in every $\gamma_k^b(T')$-set, and such a set can be extended to a global offensive k-alliance of T by adding $(V(H) - \{w\}) \cup V(Q)$; and so $\gamma_k^b(T) \leq \gamma_k^b(T') + |V(H)| + |V(Q)| - 1$. It follows that $\gamma_k^b(T) = \gamma_k^b(T') + |V(H)| + |V(Q)| - 1$. Using induction on T', we obtain $\gamma_k^b(T) = \left(n(T) + |L_k(T)| \right) / 2$.

Case 2. \(T \) is obtained from \(T' \) by using operation \(O_2 \).

Let \(H \) be the \(N_k \)-tree of special vertex \(w \) of degree \(k - 1 \) or \(k \) added to \(T' \) and let \(Q_1, Q_2, \ldots, Q_t \) be the \(t \geq 0 \) new trees that can possibly be added to \(T' \), each one of maximum degree at most \(k - 1 \). Then

\[
n(T) = n(T') + n(H) + \sum_{j=1}^{t} |V(Q_j)|,
\]

and

\[
|L_k(T)| = |L_k(T')| - 1 + |V(H) - \{w\}| + \sum_{j=1}^{t} |V(Q_j)|.
\]

Every \(\gamma_k^h(T') \)-set contains \(u \) and can be extended to a global offensive \(k \)-alliance of \(T \) by adding the set \(V(H) - \{w\} \) and all the vertices of \(Q_j \) for every \(j \), so

\[
\gamma_k^h(T) \leq \gamma_k^h(T') + |V(H)| - 1 + \sum_{j=1}^{t} |V(Q_j)|.
\]

On the other hand, \(V(Q_j) \subseteq S \) for every \(j \), \((V(H) - \{w\}) \subseteq S \) and \(S \) must contain one of \(w \) or \(u \), otherwise \(S \) would not be a global offensive \(k \)-alliance of \(T \) since \(|N(w) \cap S| = k < k + 1 = |N(w) - S| + k \). Thus we may assume that \(u \in S \), and hence \(S \) minus the sets \(V(H) - \{w\} \) and \(V(Q_j) \) for every \(j \) is a global offensive \(k \)-alliance of \(T' \) implying that

\[
\gamma_k^h(T') \leq \gamma_k^h(T) - |V(H)| + 1 - \sum_{j=1}^{t} |V(Q_j)|,
\]

and so

\[
\gamma_k^h(T) = \gamma_k^h(T') + |V(H)| - 1 + \sum_{j=1}^{t} |V(Q_j)|.
\]

Using the induction on \(T' \), we obtain \(\gamma_k^h(T) = (n(T) + |L_k(T)|)/2 \).

We now give a constructive characterization of the trees \(T \) with the property that \(\gamma_k(T) = (n(T) + |L_k(T)|)/2 \) for every integer \(k \geq 2 \).

Theorem 2.5. Let \(k \geq 2 \) be an integer. A tree \(T \) satisfies \(\gamma_k(T) = (n(T) + |L_k(T)|)/2 \) if and only if either \(\Delta(T) \leq k - 2 \) or \(T \in \mathcal{F}_k \).

Proof. Clearly, if \(T \) is a tree with \(\Delta(T) \leq k - 2 \), then \(|L_k(T)| = n(T) \) and so \(\gamma_k(T) = n(T) = (n(T) + |L_k(T)|)/2 \). By Lemma 2.4, if \(T \in \mathcal{F}_k \), then \(\gamma_k(T) = (n(T) + |L_k(T)|)/2 \).

Let us prove the necessity. Let \(T \) be a tree with \(\gamma_k^h(T) = (n(T) + |L_k(T)|)/2 \) for a positive integer \(k \geq 2 \). Suppose that \(\Delta(T) \geq k - 1 \) and let \(Z(T) = \{x \in V(T) : \)
\(\deg_T(x) \geq k - 1 \). We use an induction on the size of \(Z(T) \), where \(|Z(T)| \geq 1\).

If \(|Z(T)| = 1\) then \(T \) is an exact \(N_k \)-tree and hence \(T \in \mathcal{F}_k \), because otherwise \(\gamma_k^h(T) = n(T) - 1 < n(T) = \frac{n(T) + |L_k(T)|}{2} \).

Let \(|Z(T)| \geq 2\) and assume that every tree \(T' \) with \(|Z(T')| < |Z(T)|\) such that \(\gamma_k^h(T') = (n(T') + |L_k(T')|)/2 \) is in \(\mathcal{F}_k \).

Note that we have seen in the proof of Theorem 2.1 that \(A \cup L_k(T) \) and \(B \cup L_k(T) \) are two global offensive \(k \)-alliances of \(T \), where \(\min\{|A \cup L_k(T)|, |B \cup L_k(T)|\} \leq \frac{n(T) - |L_k(T)|}{2} \). It follows that if \(\gamma_k^h(T) = \frac{n(T) + |L_k(T)|}{2} \), then \(A \cup L_k(T) \) and \(B \cup L_k(T) \) are two \(\gamma_k^h(T) \)-sets.

Let \(T \) be a tree with \(\gamma_k^h(T) = (n(T) + |L_k(T)|)/2 \) and \(S \) a \(\gamma_k^h(T) \)-set. If every vertex of \(T \) has degree at most \(k - 1 \) then \(T \) is an exact \(N_k \)-tree. So assume that \(\Delta(T) \geq k \).

Then \(T \) has at least two vertices of degree at least \(k \) for otherwise \(\gamma_k^h(T) = n - 1 \neq \frac{n(T) + |L_k(T)|}{2} \), a contradiction.

We now root \(T \) at a vertex \(r \) of maximum eccentricity. Let \(w \) be a vertex of degree at least \(k \) at maximum distance from \(r \). Such a vertex exists since \(\Delta(T) \geq k \). Clearly \(w \neq r \) and \(T_w \) is an \(N_k \)-tree. Let \(u \) be the parent of \(w \) in the rooted tree. Assume that \(\deg_T(u) < k \). Without loss of generality we may assume that \(w \in A \). Then \(u \in L_k(T) \) and every descendant of \(w \) is in \(L_k(T) \). As seen above \(A \cup L_k(T) \) is a \(\gamma_k^h(T) \)-set but then \((A - \{w\}) \cup L_k(T) \) is a global offensive \(k \)-alliance of \(T \), a contradiction. Thus \(\deg_T(u) \geq k \). Likewise if \(u \) has a child \(b \neq w \) of degree at least \(k \), then \(w, b \in A \), and so \((A - \{w, b\}) \cup \{w\} \cup L_k(T) \) is a global offensive \(k \)-alliance of \(T \) of size \(\frac{n(T) - |L_k(T)|}{2} \) which leads to a contradiction too. Thus every child of \(u \) besides \(w \) has degree at most \(k - 1 \) and so every vertex of \(D(u) - \{w\} \) has degree at most \(k - 1 \). We distinguish between two cases:

Case 1. Assume that \(\deg_T(w) \geq k + 2 \). Assume that \(\deg_T(u) \geq k + 2 \). Then every neighbor of \(u \) is in \(L_k(T) \) or in \(A \) (\(w \) and possibly the parent of \(u \)). It follows that \((A - \{u\}) \cup L_k(T) \) is a global offensive \(k \)-alliance of \(T \), a contradiction.

It remains the case that \(k \leq \deg_T(u) \leq k + 1 \). Now consider the subtree \(T' = T - (T_w \cup T_b) \), where \(T_b \) is any subtree rooted at a child \(b \neq w \) of \(u \) if \(\deg_T(u) = k + 1 \) and \(V(T_b) = \emptyset \) if \(\deg_T(u) = k \). Thus in both cases \(u \) has degree \(k - 1 \) in \(T' \) and \(b \) has degree at most \(k - 2 \) in \(T_b \). Then every \(\gamma_k^h(T') \)-set contains \(u \) and such a set can be extended to a global offensive \(k \)-alliance of \(T \) by adding \((V(T_w) - \{w\}) \cup V(T_b) \), and so \(\gamma_k^h(T) \leq \gamma_k^h(T') + |D(w)| + |D[b]| \). The equality is obtained by the fact that \((B \cup L_k(T)) \setminus (D(w) \cup D[b]) \) is a global offensive \(k \)-alliance of \(T' \). Since \(w \) is a vertex of degree at least \(k \) at maximum distance from \(r \), we deduce that \(|L_k(T)| = |L_k(T')| + |D(w)| + |D[b]| - 1 \). It follows that

\[
\frac{n(T) + |L_k(T)|}{2} = \gamma_k^h(T) = \gamma_k^h(T') + |D(w)| + |D[b]|
\]

and therefore \(\frac{n(T') + |L_k(T')|}{2} = \gamma_k^h(T') \). Since \(|Z(T')| < |Z(T)|\), by induction on \(T' \), we have \(T' \in \mathcal{F}_k \). Because \(T \) is obtained from \(T' \) by using Operation \(\mathcal{O}_k \), \(T \in \mathcal{F}_k \).

Case 2. Assume that \(k \leq \deg_T(w) \leq k + 1 \). Let \(C(u) = \{w, y_1, \ldots, y_p\} \) where \(p = \deg_T(u) - 2 \). Recall that every vertex of \(C(u) - \{w\} \) has degree at most \(k - 1 \). Let
$T' = T - T_w - \bigcup_{j=1}^{p+2-k} T_{y_j}$. Then T' is nontrivial and $\deg_{T'}(u) = k - 1$. It can be seen that

$$\gamma^k_0(T) = \gamma^k_0(T') + \left| D(w) \cup \left(\bigcup_{j=1}^{p+2-k} D[y_j] \right) \right|,$$

$$n(T) = n(T') + \left| D(w) \cup \left(\bigcup_{j=1}^{p+2-k} D[y_j] \right) \right| + 1$$

and

$$L_k(T) = L_k(T') + \left| D(w) \cup \left(\bigcup_{j=1}^{p+2-k} D[y_j] \right) \right| - 1,$$

implying that $\gamma^k_0(T') = (n(T') + |L_k(T')|)/2$ with $|Z(T')| < |Z(T)|$. By the inductive hypothesis on T', we have $T' \in \mathcal{F}_k$. Thus $T \in \mathcal{F}_k$ because it is obtained from T' by using Operation O_2.

Acknowledgements

This research was supported by “Programmes Nationaux de Recherche: Code 8/u09/510”.

REFERENCES

Mustapha Chellali
m_chellali@yahoo.com

University of Blida
LAMDA-RO Laboratory, Department of Mathematics
B.P. 270, Blida, Algeria
Lutz Volkmann
volkm@math2.rwth-aachen.de

RWTH Aachen University
Lehrstuhl II für Mathematik
Templergraben 55, D-52056 Aachen, Germany

Received: June 15, 2010.
Revised: February 13, 2011.
Accepted: March 3, 2011.