http://dx.doi.org/10.7494/OpMath.2011.31.4.645

STRENGTHENED STONE-WEIERSTRASS TYPE THEOREM

Piotr Niemiec

Abstract. The aim of the paper is to prove that if L is a linear subspace of the space $\mathcal{C}(K)$ of all real-valued continuous functions defined on a nonempty compact Hausdorff space K such that $\min(|f|, 1) \in L$ whenever $f \in L$, then for any nonzero $g \in \bar{L}$ (where \bar{L} denotes the uniform closure of L in $\mathcal{C}(K)$) and for any sequence $(b_n)_{n=1}^{\infty}$ of positive numbers satisfying the relation $\sum_{n=1}^{\infty} b_n = ||g||$ there exists a sequence $(f_n)_{n=1}^{\infty}$ of elements of L such that $||f_n|| = b_n$ for each $n \geqslant 1$, $g = \sum_{n=1}^{\infty} f_n$ and $|g| = \sum_{n=1}^{\infty} |f_n|$. Also the formula for \bar{L} is given.

Keywords: Stone-Weierstrass theorem, function lattices.

Mathematics Subject Classification: 41A65, 54C30, 54C40.

1. INTRODUCTION

In the 19th century Weierstrass proved that every continuous function defined on the interval [0,1] can be uniformly approximated by polynomials. Later Stone [10,11] generalized that result as follows: if K is a compact Hausdorff space and \mathcal{A} is a subalgebra of $\mathcal{C}(K)$ which contains all constant functions and separates points of K (i.e. if for any two distinct points a and b of K there exists a function $f \in \mathcal{A}$ such that $f(a) \neq f(b)$), then \mathcal{A} is dense in $\mathcal{C}(K)$ in the topology of uniform convergence. This fact is known as the Stone-Weierstrass theorem. A simple proof of it is based on the following property:

(*) If $\max(f,g)$, $\min(f,g) \in \mathcal{F}$ for any elements f and g of a subfamily \mathcal{F} of $\mathcal{C}(K)$ and if $g \colon K \to \mathbb{R}$ is such a continuous function that for any $x,y \in K$ there exists $f \in \mathcal{F}$ satisfying the conditions f(x) = g(x) and f(y) = g(y), then g belongs to the uniform closure of the family \mathcal{F} .

The Stone-Weierstrass theorem has many generalizations. For example, Glimm [5] proved its counterpart for arbitrary (noncommutative) \mathcal{C}^* -algebras, Bishop [2] generalized it to anti-symmetric algebras, Hofmann [6] formulated the categorical version of it and Garrido and Montalvo [4] generalized it to completely regular spaces. We strengthen the Stone-Weierstrass theorem for special linear subspaces of $\mathcal{C}(K)$, as

646 Piotr Niemiec

described in the Abstract. Our result is, in a sense, in the spirit of classical Bernstein's lethargy theorem [1] (for a generalization see e.g. [7]) because it gives some information on the behavior of the sequence which approximates the given element of the space.

2. MAIN RESULT

In this paper K is a nonempty compact Hausdorff space, $\mathcal{C}(K)$ denotes the real algebra of all continuous real-valued functions on K equipped with the topology of uniform convergence and with the supremum norm $\|\cdot\|$, and L is a linear subspace of $\mathcal{C}(K)$ satisfying the condition:

$$\forall f \in L \colon \min(|f|, 1) \in L. \tag{2.1}$$

The space L has the following properties, the proofs of which are quite simple. Whenever $f, f_1, \ldots, f_n \in L$ and t > 0, then:

- (L1) $|f| \in L$,
- (L2) $\max(f_1,\ldots,f_n), \min(f_1,\ldots,f_n) \in L,$
- (L3) $f_+, f_- \in L$, where $f_+ = \max(f, 0)$ and $f_- = \max(-f, 0)$,
- (L4) $\min(f, t), \max(f, -t) \in L$.

The main theorem is preceded by the following lemma.

Lemma 2.1. Let $h \in \bar{L}$ be a (nonzero) nonnegative function and let $t \in [0, ||h||)$. Then there exists $f \in L$ such that ||f|| = t, ||h - f|| = ||h|| - t and $0 \le f \le h$.

Proof. Let $\varepsilon = \frac{1}{3}(\|h\| - t) > 0$. There exists $f_1 \in L$ such that $\|h - f_1\| \leqslant \varepsilon$. Let $f_2 = \max(f_1, 0)$. Thanks to (L3), $f_2 \in L$. Since $h \geqslant 0$ and the function $\mathbb{R} \ni x \mapsto \max(x, 0) \in \mathbb{R}$ is nonexpansive, i.e. $|\max(x, 0) - \max(y, 0)| \leqslant |x - y|$ for any $x, y \in \mathbb{R}$, we conclude that

$$||h - f_2|| \leqslant \varepsilon. \tag{2.2}$$

Further, let $f_3 = f_2 - 2\min(f_2, \varepsilon)$. By (L4), $f_3 \in L$. Moreover, $f_3 \leqslant h$. Indeed, thanks to (2.2), $f_2(x) \leqslant h(x) + \varepsilon$. So, if $f_2(x) \geqslant \varepsilon$, then $f_3(x) = f_2(x) - 2\varepsilon \leqslant h(x)$. On the other hand, if $f_2(x) \leqslant \varepsilon$, then $f_3(x) = -f_2(x) \leqslant 0 \leqslant h(x)$.

Now let $f_4 = \max(f_3, 0)$. Then $f_4 \in L$ and $0 \leqslant f_4 \leqslant h$. Finally put $f = \min(f_4, t) \in L$. We easily see that $0 \leqslant f \leqslant h$ and $||f|| \leqslant t$. It is enough to check that $||h - f|| \leqslant ||h|| - t$. Let $x \in K$. If $h(x) \leqslant ||h|| - t$, then clearly $h(x) - f(x) \leqslant ||h|| - t$. So we may assume that $h(x) \geqslant ||h|| - t = 3\varepsilon$. Then, by (2.2), $f_2(x) \geqslant h(x) - \varepsilon \geqslant 2\varepsilon$ and hence $f_4(x) = f_3(x) = f_2(x) - 2\varepsilon \geqslant 0$. Now if $f_4(x) \geqslant t$, then f(x) = t and $h(x) - f(x) \leqslant ||h|| - t$. On the other hand, if $f_4(x) \leqslant t$, then $f(x) = f_2(x) - 2\varepsilon$ and finally $h(x) - f(x) = h(x) - f_2(x) + 2\varepsilon \leqslant ||h - f_2|| + 2\varepsilon \leqslant 3\varepsilon = ||h|| - t$.

Theorem 2.2. Let $g \in \bar{L}$ be a nonzero function. Let $(b_n)_{n=1}^{\infty}$ be a sequence of positive numbers such that

$$\sum_{n=1}^{\infty} b_n = ||g||. \tag{2.3}$$

Then there exists a sequence $(f_n)_{n=1}^{\infty}$ of elements of L such that $||f_n|| = b_n$ for any $n \ge 1$ and $g = \sum_{n=1}^{\infty} f_n$. What is more, $\{g \ge 0\} = \bigcap_{n=1}^{\infty} \{f_n \ge 0\}$ and $\{g \le 0\} = \bigcap_{n=1}^{\infty} \{f_n \le 0\}$. In particular, $|g| = \sum_{n=1}^{\infty} |f_n|$.

Proof. First assume that $g \ge 0$. Since $b_n > 0$ for each $n \ge 1$ and thanks to (2.3), $\sum_{k=1}^n b_k < \|g\|$. An easy use of the induction argument ensures us that, thanks to Lemma 2.1, there exists a sequence $(f_n)_{n=1}^{\infty}$ of elements of L such that $f_n \ge 0$, $\sum_{k=1}^n f_k \le g$, $\|f_n\| = b_n$ and

$$\left\|g - \sum_{k=1}^{n} f_k\right\| = \|g\| - \sum_{k=1}^{n} b_k$$
 (2.4)

for every $n \ge 1$. Indeed, if f_1, \ldots, f_{n-1} are found, apply Lemma 2.1 for $h = g - \sum_{k=1}^{n-1} f_{n-1}$ and $t = b_n$ to obtain the function f_n .

We conclude from (2.3) and (2.4) that the series $\sum_{n=1}^{\infty} f_n$ is uniformly convergent to g and therefore in case of nonnegative g the proof is finished.

Now let g be an arbitrary element of \bar{L} . By (L3) and the continuity of the operators $f \mapsto f_+$ and $f \mapsto f_-$, $g_+, g_- \in \bar{L}$. Observe that

$$g_+ \cdot g_- \equiv 0$$
 and $||g|| = \max(||g_+||, ||g_-||).$ (2.5)

The second of the above connections, combined with (2.3), implies that there exist two sequences $(b_n^+)_{n=1}^{\infty}$ and $(b_n^-)_{n=1}^{\infty}$ of positive numbers such that

$$\sum_{n=1}^{\infty} b_n^+ = \|g_+\|, \quad \sum_{n=1}^{\infty} b_n^- = \|g_-\| \quad \text{and} \quad \max(b_n^+, b_n^-) = b_n.$$
 (2.6)

Now we may apply the first part of the proof for g_+ and g_- to obtain two corresponding sequences $(f_n^+)_{n=1}^{\infty}$ and $(f_n^-)_{n=1}^{\infty}$ of nonnegative elements of L satisfying the equalities $g_{\pm} = \sum_{n=1}^{\infty} f_n^{\pm}$ and $||f_n^{\pm}|| = b_n^{\pm}$ $(n \ge 1)$. To end the construction, put $f_n = f_n^+ - f_n^-$ and observe that:

- (i) $f_n^+ \cdot f_n^- \equiv 0$ (thanks to (2.5) and the inequality $0 \leqslant f_n^{\pm} \leqslant g_{\pm}$), and hence $||f_n|| = \max(||f_n^+||, ||f_n^-||) = b_n$ (by (2.6)),
- (ii) if $g(x) \ge 0$ [$g(x) \le 0$], then $g_{-}(x) = 0$ [$g_{+}(x) = 0$], so $f_{n}^{-}(x) = 0$ [$f_{n}^{+}(x) = 0$] for each $n \ge 1$ and therefore $f_{n}(x) \ge 0$ [$f_{n}(x) \le 0$].

3. SOME APPLICATIONS

Theorem 2.2 cannot be applied for L being the space of all real-valued polynomials on the interval [0,1], because this space does not satisfy the crucial condition (2.1). However, it is well known that if (K,d) is a compact metric space, then the space $\operatorname{Lip}(K)$ consisting of all real-valued $\operatorname{Lipschitz}$ functions on K $(g\colon K\to\mathbb{R}$ belongs to $\operatorname{Lip}(K)$ if there exists a constant $M\in[0,\infty)$ such that $|g(x)-g(y)|\leqslant Md(x,y)$ for every $x,y\in K$ is a subalgebra of $\mathcal{C}(K)$ which separates points of K. What is more, if $f\in\operatorname{Lip}(K)$, then $\min(|f|,1)\in\operatorname{Lip}(K)$.

648 Piotr Niemiec

So, a special case of Theorem 2.2 is the following statement.

Proposition 3.1. If (K, d) is a nonempty compact metric space and $g \in C(K)$, then there exists a sequence $(f_n)_{n=1}^{\infty}$ of real-valued Lipschitz functions such that $||g|| = \sum_{n=1}^{\infty} ||f_n||$, $g = \sum_{n=1}^{\infty} f_n$ and $|g| = \sum_{n=1}^{\infty} |f_n|$.

Proposition 3.1 is applied in [9] to establish an important property of the function linear space CFL(U), whose elements are the uniform limits of linear combinations of maps of the form $\mathbb{U}\ni x\mapsto d(x,y)-d(x,z)\in\mathbb{R}$ with $y,z\in\mathbb{U}$, generated by the Urysohn universal metric space (\mathbb{U},d) (\mathbb{U} is uniquely determined by its diameter and the following properties: it is separable and complete, every separable metric space of diameter no greater than diam \mathbb{U} is isometrically embeddable in \mathbb{U} , and every isometric map between finite subsets of \mathbb{U} is extendable to an isometry of \mathbb{U}), namely: if K is a compact subset of \mathbb{U} and $f\colon K\to\mathbb{R}$ is a continuous function, then there exists an extension $F\in \mathrm{CFL}(\mathbb{U})$ of f such that $\|F\|=\|f\|$. This result enables us to build an example of an adjoint linear isomorphism between dual Banach spaces which is an isometry on the weakly-* dense subspace but not on the whole domain.

In case when L is a subspace of C(K), the closure of L can be nicely described. To do that, we put the definition.

Definition 3.2. The null set of the space L is the set $\mathcal{N}(L) = \{x \in K : f(x) = 0 \text{ for each } f \in L\}$. The equivalence relation $\mathcal{R}(L)$ on K induced by L is defined by the formula:

$$(x,y) \in \mathcal{R}(L) \iff \forall f \in L \colon f(x) = f(y) \qquad (x,y \in K).$$

The algebra generated by L is the algebra

$$\mathcal{A}(\mathcal{N}(L),\mathcal{R}(L)) = \{g \in \mathcal{C}(K) | \ g\big|_{\mathcal{N}(L)} \equiv 0, \quad \forall (x,y) \in \mathcal{R}(L) \colon \ g(x) = g(y)\}.$$

The sets $\mathcal{N}(L)$ and $\mathcal{R}(L)$ are closed subsets of K and $K \times K$, respectively, and the algebra $\mathcal{A}(\mathcal{N}(L), \mathcal{R}(L))$ is a closed subalgebra of $\mathcal{C}(K)$, possibly with no unit.

The following result, which has entered folklore (cf. [3]), explains the terminology. For the reader's convenience, we give a short proof.

Proposition 3.3. The closure of the space L (satisfying the condition (2.1)) in the space C(K) coincides with $A(\mathcal{N}(L), \mathcal{R}(L))$.

Proof. Clearly $\bar{L} \subset \mathcal{A}(\mathcal{N}(L), \mathcal{R}(L))$. To see the inverse inclusion, take $g \in \mathcal{A}(\mathcal{N}(L), \mathcal{R}(L))$. Observe that:

$$\forall x, y \in K \ \exists f \in L \colon \ f(x) = g(x), \ f(y) = g(y). \tag{3.1}$$

Indeed, the following five conditions are possible:

- (1°) $x, y \in \mathcal{N}(L)$: take f = 0.
- (2°) $x \in \mathcal{N}(L)$ and $y \notin \mathcal{N}(L)$ (or conversely): there exists $f_0 \in L$ such that $f_0(y) \neq 0$. Now it is enough to put $f = \frac{g(y)}{f_0(y)} f_0$.
- (3°) $x, y \notin \mathcal{N}(L)$ and $(x, y) \in \mathcal{R}(L)$: do the same as in (2°).

- (4°) $x,y \notin \mathcal{N}(L)$, $(x,y) \notin \mathcal{R}(L)$ and g(x) = g(y): there exist $f_1, f_2 \in L$ such that $f_1(x) \cdot f_2(y) \neq 0$. Let $f_0 = |f_1| + |f_2|$. By (L1), $f_0 \in L$. Let $m = \min(f_0(x), f_0(y)) > 0$ and finally put $f = \frac{g(x)}{m} \min(f_0, m) \in L$.

 (5°) $x,y \notin \mathcal{N}(L)$, $(x,y) \notin \mathcal{R}(L)$ and $g(x) \neq g(y)$: there exists $f_1 \in L$ such that
- (5°) $x, y \notin \mathcal{N}(L)$, $(x, y) \notin \mathcal{R}(L)$ and $g(x) \neq g(y)$: there exists $f_1 \in L$ such that $f_1(x) \neq f_1(y)$. By the proof of (4°), there is $f_2 \in L$ such that $f_2(x) = f_2(y) = g(x) \frac{g(x) g(y)}{f_1(x) f_1(y)} f_1(x)$. Now it is easy to check that f(x) = g(x) and f(y) = g(y) for $f = \frac{g(x) g(y)}{f_1(x) f_1(y)} f_1 + f_2 \in L$.

Having (3.1), it suffices to apply the property (\star) .

Now we shall give some illustrative examples dealing with the subject.

Examples 3.4. In everywhere below, Ω is a nonempty compact Hausdorff space and each of the spaces L appearing below consists of continuous real-valued functions on Ω and satisfies (2.1).

- A. Suppose Ω is totally disconnected. The space L of all functions with finite images is dense in $C(\Omega)$.
- B. Let U be an open nonempty subset of Ω and let L constist of all functions whose support is contained in U; that is, $f \in L$ iff supp $f := \overline{f^{-1}(\mathbb{R} \setminus \{0\})} \subset U$. Then \overline{L} constists of all functions vanishing on $\Omega \setminus U$.
- C. Suppose Ω is metrizable and d is a metric on Ω which induces the topology of Ω . For a fixed p > 0 let L be the space of all functions satisfying the Hölder condition with exponent p. (L may not be dense in $C(\Omega)$ for p > 1. It may even constists only of constant functions, as it is in case of $\Omega = [0,1]$ with the natural metric.)
- D. Let Ω and d be as in the previous example and let L be the space of all the so-called little Lipschitz functions on Ω (cf. [12, Chapter 3]); that is, $f \in L$ iff for every $\varepsilon > 0$ there is $\delta > 0$ such that $|f(x) f(y)| \leq \varepsilon d(x,y)$ whenever $d(x,y) \leq \delta$. (L may consists only of constant functions. See [12] for utility of this space.)
- E. Let $\Omega = [a, b] \subset \mathbb{R}$ and let L be the space of all piecewise affine functions. Then L is dense in $C(\Omega)$ and it is **not** an algebra.
- F. Let A be a countable subset of Ω and let L constist of all f such that $\sum_{a \in A} |f(a)| < +\infty$. L is a proper (nonclosed) ideal in $C(\Omega)$. One may show that L is dense in $C(\Omega)$ provided the topology of A is discrete. (Indeed, in the latter case L separates points of Ω and does not vanish at every point.)

We end the paper with the note that condition (2.1) is crucial in the classical theory of the *Daniell-Stone integral* (cf. [8]) and therefore we believe our result may find application there.

REFERENCES

- [1] S.N. Bernstein, Collected Works II, Akad. Nauk SSSR, Moscow, 1954 [in Russian].
- [2] E. Bishop, A generalization of the Stone-Weierstrass theorem, Pacific J. Math. 11 (1961), 777-783.

650 Piotr Niemiec

[3] C. Dellacherie, Un complément au théorème de Weierstrass-Stone, Sémin. Prob. Strasbourg 1 (1967), 52–53.

- [4] M.I. Garrido, F. Montalvo, On some generalizations of the Kakutani-Stone and Stone-Weierstrass theorems, Extracta Math. 6 (1991), 156–159.
- [5] J. Glimm, A Stone-Weierstrass theorem for C*-algebras, Ann. Math. 72 (1960), 216–244.
- [6] D. Hofmann, On a generalization of the Stone-Weierstrass theorem, Appl. Categor. Struct. 10 (2002), 569–592.
- [7] G. Lewicki, Bernstein's "lethargy" theorem in metrizable topological linear spaces, Mh. Math. 113 (1992), 213–226.
- [8] K. Maurin, Analysis, Part II, D. Reidel, Dordrecht-Boston-London, 1980.
- [9] P. Niemiec, Canonical Banach function spaces generated by Urysohn universal spaces. Measures as Lipschitz maps, Studia Math. 192 (2009), 97–110.
- [10] M.H. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), 375–481.
- [11] M.H. Stone, The generalized Weierstrass approximation theorem, Math. Mag. 21 (1948), 167–184.
- [12] N. Weaver, Lipschitz Algebras, World Scientific, 1999.

Piotr Niemiec piotr.niemiec@uj.edu.pl

Jagiellonian University Institute of Mathematics ul. Łojasiewicza 6, 30-348 Krakow, Poland

Received: July 30, 2010. Revised: December 1, 2010. Accepted: December 12, 2010.