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STRENGTHENED STONE-WEIERSTRASS
TYPE THEOREM

Piotr Niemiec

Abstract. The aim of the paper is to prove that if L is a linear subspace of the space C(K)
of all real-valued continuous functions defined on a nonempty compact Hausdorff space K
such that min(|f|,1) € L whenever f € L, then for any nonzero g € L (where L denotes the
uniform closure of L in C(K)) and for any sequence (b, )51 of positive numbers satisfying the
relation Y °7 | by, = ||g|| there exists a sequence (fn )52 of elements of L such that || fn| = bn
foreachn > 1, 9= "% fu and |g| = Y57 |fn|. Also the formula for L is given.
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1. INTRODUCTION

In the 19th century Weierstrass proved that every continuous function defined on
the interval [0, 1] can be uniformly approximated by polynomials. Later Stone [10,11]
generalized that result as follows: if K is a compact Hausdorff space and A is a
subalgebra of C(K) which contains all constant functions and separates points of K
(i.e. if for any two distinct points a and b of K there exists a function f € A such
that f(a) # f(b)), then A is dense in C(K) in the topology of uniform convergence.
This fact is known as the Stone- Weierstrass theorem. A simple proof of it is based on
the following property:
If max(f,g), min(f,g) € F for any elements f and g of a subfamily F of
(%) C(K) and if g: K — R is such a continuous function that for any x,y € K
there exists [ € F satisfying the conditions f(x) = g(x) and f(y) = g(y),
then g belongs to the uniform closure of the family F.
The Stone-Weierstrass theorem has many generalizations. For example, Glimm
[5] proved its counterpart for arbitrary (noncommutative) C*-algebras, Bishop [2]
generalized it to anti-symmetric algebras, Hofmann [6] formulated the categorical
version of it and Garrido and Montalvo [4] generalized it to completely regular spaces.
We strengthen the Stone-Weierstrass theorem for special linear subspaces of C(K), as
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described in the Abstract. Our result is, in a sense, in the spirit of classical Bernstein’s
lethargy theorem [1] (for a generalization see e.g. [7]) because it gives some information
on the behavior of the sequence which approximates the given element of the space.

2. MAIN RESULT

In this paper K is a nonempty compact Hausdorff space, C(K) denotes the real algebra
of all continuous real-valued functions on K equipped with the topology of uniform
convergence and with the supremum norm | - ||, and L is a linear subspace of C(K)
satisfying the condition:

Vf e L: min(|]f|,1) € L. (2.1)

The space L has the following properties, the proofs of which are quite simple. When-
ever f, f1,..., fn € L and t > 0, then:

(L1) |fl € L,

(L2) max(fi1,..., fn),min(f1,...,fn) € L,

(L3) f4,f- € L, where fi = max(f,0) and f_ = max(—f,0),
(L4) min(f,t), max(f, —t) € L.

The main theorem is preceded by the following lemma.

Lemma 2.1. Let h € L be a (nonzero) nonnegative function and let t € [0, | k).
Then there exists f € L such that ||f||=t, |h— fll= |kl =t and 0 < f < h.

Proof. Let ¢ = (||h|| —t) > 0. There exists fi € L such that [|h — fi]| < e. Let
fo = max(f1,0). Thanks to (L3), fo € L. Since h > 0 and the function R 3 z
max(z,0) € R is nonexpansive, i.e. |max(z,0) —max(y,0)| < |z —y| for any z,y € R,
we conclude that

Ih=fll <e. (2:2)

Further, let f5 = fo —2min(fs,¢). By (L4), f5 € L. Moreover, f3 < h. Indeed, thanks
0 (2.2), fa(z) < h(x) + . So, if fa(x) > €, then f3(z) = fa(x) — 2e < h(x). On the
other hand, if fy(z) < ¢, then f3(z) = —fo(x) < 0 < h(x).

Now let fy = max(f3,0). Then f; € L and 0 < f; < h. Finally put f =
min(fy,t) € L. We easily see that 0 < f < h and || f|| < ¢. It is enough to check that
lh— fIl < ||h]| —t. Let # € K. If h(z) < ||| — ¢, then clearly h(z) — f(z) < ||h|| —t.
So we may assume that h(z) > ||h|| —t = 3e. Then, by (2.2), fa(z) = h(z) — e > 2¢
and hence fi(z) = f3(x) = fo(x) — 2¢ > 0. Now if fy(z) > ¢, then f(x) = ¢ and
h(z) — f(x) < ||h|| — t. On the other hand, if fs(x) < ¢, then f(x) = f2(x) — 2¢ and
finally h(z) — f(z) = h(z) — fa(z) + 26 < ||h — fol| + 26 < 3c = ||h| — t. O

Theorem 2.2. Let g € L be a nonzero function. Let (b,)%; be a sequence of positive
numbers such that

> ba=llgll (2.3)
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Then there exists a sequence ()22, of elements of L such that ||fn|| = bn for any
n>1andg=>3,", fn What is more, {g > 0} = (o, {fn = 0} and {g < 0} =
Mo {fn < O0}. In particular, |g| = >07 | fnl-

Proof. First assume that g > 0. Since b,, > 0 for each n > 1 and thanks to (2.3),
Sh_1be < |lgll. An easy use of the induction argument ensures us that, thanks to
Lemma 2.1, there exists a sequence (f,)22; of elements of L such that f, > 0,

ZZ:I fk < 9, ||an = bn and

0> 5 =l =S e (2.0
k=1 k=1

for every n > 1. Indeed, if fi,..., fn_1 are found, apply Lemma 2.1 for h = g —
Zz;l fn—1 and t = b, to obtain the function f,.

We conclude from (2.3) and (2.4) that the series Y > | f, is uniformly convergent
to g and therefore in case of nonnegative g the proof is finished.

Now let g be an arbitrary element of L. By (L3) and the continuity of the operators
fr fyand f— f_, gy,g_ € L. Observe that

9+-9-=0 and |g| = max([lg. [, llg-)- (2.5)

The second of the above connections, combined with (2.3), implies that there exist

two sequences (b;)2 ; and (b )2, of positive numbers such that

oo

Yobb=lgells Y by =lg-ll and max(b},b;) = by (2.6)

n=1 n=1

Now we may apply the first part of the proof for g and g_ to obtain two corresponding
sequences (f,7)2°, and (f,, )%, of nonnegative elements of L satisfying the equalities
gr =Yoo, fand ||[fF] = b (n > 1). To end the construction, put f, = f;f — f
and observe that:

(i) fif - f7 = 0 (thanks to (2.5) and the inequality 0 < fF < g+), and hence
[ fnll = max (£ [, 1 £1]) = bn (by (26)),

(i) if g(x) > 0 [g(z) < 0], then g (2) = 0 [g5 (x) = O], 50 fi () = 0 £ (x) = 0] for
each n > 1 and therefore f,,(z) > 0 [fn(z) < 0]. O

3. SOME APPLICATIONS

Theorem 2.2 cannot be applied for L being the space of all real-valued polynomials
on the interval [0, 1], because this space does not satisfy the crucial condition (2.1).
However, it is well known that if (K, d) is a compact metric space, then the space
Lip(K) consisting of all real-valued Lipschitz functions on K (g: K — R belongs to
Lip(K) if there exists a constant M € [0,00) such that |g(z) — g(y)| < Md(z,y) for
every z,y € K) is a subalgebra of C(K) which separates points of K. What is more,
if f € Lip(K), then min(|f],1) € Lip(K).
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So, a special case of Theorem 2.2 is the following statement.

Proposition 3.1. If (K,d) is a nonempty compact metric space and g € C(K), then
there exists a sequence (f,)52, of real-valued Lipschitz functions such that ||g|| =

Yo Il g = 32000 fuand gl = 3202 [ fal

Proposition 3.1 is applied in [9] to establish an important property of the function
linear space CFL(U), whose elements are the uniform limits of linear combinations
of maps of the form U 3 z — d(z,y) — d(x, z) € R with y,z € U, generated by the
Urysohn universal metric space (U, d) (U is uniquely determined by its diameter and
the following properties: it is separable and complete, every separable metric space of
diameter no greater than diam U is isometrically embeddable in U, and every isometric
map between finite subsets of U is extendable to an isometry of U), namely: if K is
a compact subset of U and f: K — R is a continuous function, then there exists an
extension F' € CFL(U) of f such that ||F'|| = ||f]]. This result enables us to build an
example of an adjoint linear isomoprhism between dual Banach spaces which is an
isometry on the weakly-* dense subspace but not on the whole domain.

In case when L is a subspace of C(K), the closure of L can be nicely described.
To do that, we put the definition.

Definition 3.2. The null set of the space L is the set N(L) = {x € K: f(z) =
0 for each f € L}. The equivalence relation R(L) on K induced by L is defined by the
formula:

(z,9) e R(L) <= VfeLl: f(z)=fly) (v,y€K)
The algebra generated by L is the algebra
AN(L),RL) = {g € CK)| glyp) =0, Yiay) € RID): g(a) = gly)}-
The sets N(L) and R(L) are closed subsets of K and K x K, respectively, and the
algebra AN(L), R(L)) is a closed subalgebra of C(K), possibly with no unit.

The following result, which has entered folklore (cf. [3]), explains the terminology.
For the reader’s convenience, we give a short proof.

Proposition 3.3. The closure of the space L (satisfying the condition (2.1)) in the
space C(K) coincides with AN(L), R(L)).

Proof. Clearly L C A(N(L),R(L)). To see the inverse inclusion, take g €
AWN(L),R(L)). Observe that:

Ve,y € K 3f € L: f(z) = g(x), f(y) =9(y). (3.1)
Indeed, the following five conditions are possible:

(1°) =,y € N(L): take f = 0.

(2°) x € N(L) and y ¢ N(L) (or conversely): there exists fo € L such that fo(y) # 0.
Now it is enough to put f = J?O((yy)) fo.

(3°) z,y ¢ N(L) and (x,y) € R(L): do the same as in (2°).
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(4°) =,y ¢ N(L), (z,y) ¢ R(L) and g(z) = g(y): there exist fi1,f> € L such
that fi(z) - fo(y) # 0. Let fo = [fi| + |f2- By (L1), fo € L. Let m =
min(fo(x), fo(y)) > 0 and finally put f = g( ) min (fo, m) €

(5°) =,y ¢ N(L), (z,y) ¢ R(L) and g(z) # g( ): there exists f1 € L such that
fi(z) # fi1(y). By the proof of (4°), there is fo € L such that fa(z) = fa(y) =

g(z)— f‘féi) ?EZ(/;) f1(z). Now it is easy to check that f(z) = g(z) and f(y) = g(y)

for f = AO=4f 4 fo € L.

Having (3.1), it suffices to apply the property (x). O
Now we shall give some illustrative examples dealing with the subject.

Examples 3.4. In everywhere below, Q is a nonempty compact Hausdorff space and
each of the spaces L appearing below consists of continuous real-valued functions on
Q and satisfies (2.1).

A. Suppose Q) is totally disconnected. The space L of all functions with finite images
is dense in C(L2).

B. Let U be an open nonempty subset of Q@ and let L constist of all functions whose
support is contained in U; that is, f € L iff supp f := f~1(R\ {0}) C U. Then L
constists of all functions vanishing on Q\ U.

C. Suppose Q is metrizable and d is a metric on Q0 which induces the topology of Q.
For a fixed p > 0 let L be the space of all functions satisfying the Holder condition
with exponent p. (L may not be dense in C(2) for p > 1. It may even constists
only of constant functions, as it is in case of Q@ = [0,1] with the natural metric.)

D. Let Q and d be as in the previous example and let L be the space of all the so-called
little Lipschitz functions on Q (cf. [12, Chapter 3]); that is, f € L iff for every
e > 0 there is 6 > 0 such that |f(x) — f(y)| < ed(z,y) whenever d(z,y) < 0.
(L may consists only of constant functions. See [12] for utility of this space.)

E. Let Q = [a,b] C R and let L be the space of all piecewise affine functions. Then
L is dense in C(Q) and it is not an algebra.

F. Let A be a countable subset of @ and let L constist of all f such thaty_, . , |f(a)| <
+o00. L is a proper (nonclosed) ideal in C(Q2). One may show that L is dense in
C(Q) provided the topology of A is discrete. (Indeed, in the latter case L separates
points of Q and does not vanish at every point.)

We end the paper with the note that condition (2.1) is crucial in the classical
theory of the Daniell-Stone integral (cf. [8]) and therefore we believe our result may
find application there.
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