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STRENGTHENED STONE-WEIERSTRASS
TYPE THEOREM

Piotr Niemiec

Abstract. The aim of the paper is to prove that if L is a linear subspace of the space C(K)
of all real-valued continuous functions defined on a nonempty compact Hausdorff space K
such that min(|f |, 1) ∈ L whenever f ∈ L, then for any nonzero g ∈ L̄ (where L̄ denotes the
uniform closure of L in C(K)) and for any sequence (bn)∞n=1 of positive numbers satisfying the
relation

P∞
n=1 bn = ‖g‖ there exists a sequence (fn)∞n=1 of elements of L such that ‖fn‖ = bn

for each n > 1, g =
P∞

n=1 fn and |g| =
P∞

n=1 |fn|. Also the formula for L̄ is given.
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1. INTRODUCTION

In the 19th century Weierstrass proved that every continuous function defined on
the interval [0, 1] can be uniformly approximated by polynomials. Later Stone [10,11]
generalized that result as follows: if K is a compact Hausdorff space and A is a
subalgebra of C(K) which contains all constant functions and separates points of K
(i.e. if for any two distinct points a and b of K there exists a function f ∈ A such
that f(a) 6= f(b)), then A is dense in C(K) in the topology of uniform convergence.
This fact is known as the Stone-Weierstrass theorem. A simple proof of it is based on
the following property:

(?)

If max(f, g),min(f, g) ∈ F for any elements f and g of a subfamily F of
C(K) and if g : K → R is such a continuous function that for any x, y ∈ K
there exists f ∈ F satisfying the conditions f(x) = g(x) and f(y) = g(y),
then g belongs to the uniform closure of the family F .

The Stone-Weierstrass theorem has many generalizations. For example, Glimm
[5] proved its counterpart for arbitrary (noncommutative) C∗-algebras, Bishop [2]
generalized it to anti-symmetric algebras, Hofmann [6] formulated the categorical
version of it and Garrido and Montalvo [4] generalized it to completely regular spaces.
We strengthen the Stone-Weierstrass theorem for special linear subspaces of C(K), as
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described in the Abstract. Our result is, in a sense, in the spirit of classical Bernstein’s
lethargy theorem [1] (for a generalization see e.g. [7]) because it gives some information
on the behavior of the sequence which approximates the given element of the space.

2. MAIN RESULT

In this paperK is a nonempty compact Hausdorff space, C(K) denotes the real algebra
of all continuous real-valued functions on K equipped with the topology of uniform
convergence and with the supremum norm ‖ · ‖, and L is a linear subspace of C(K)
satisfying the condition:

∀f ∈ L : min(|f |, 1) ∈ L. (2.1)

The space L has the following properties, the proofs of which are quite simple. When-
ever f, f1, . . . , fn ∈ L and t > 0, then:

(L1) |f | ∈ L,
(L2) max(f1, . . . , fn),min(f1, . . . , fn) ∈ L,
(L3) f+, f− ∈ L, where f+ = max(f, 0) and f− = max(−f, 0),
(L4) min(f, t),max(f,−t) ∈ L.

The main theorem is preceded by the following lemma.

Lemma 2.1. Let h ∈ L̄ be a (nonzero) nonnegative function and let t ∈ [0, ‖h‖).
Then there exists f ∈ L such that ‖f‖ = t, ‖h− f‖ = ‖h‖ − t and 0 6 f 6 h.

Proof. Let ε = 1
3 (‖h‖ − t) > 0. There exists f1 ∈ L such that ‖h − f1‖ 6 ε. Let

f2 = max(f1, 0). Thanks to (L3), f2 ∈ L. Since h > 0 and the function R 3 x 7→
max(x, 0) ∈ R is nonexpansive, i.e. |max(x, 0)−max(y, 0)| 6 |x− y| for any x, y ∈ R,
we conclude that

‖h− f2‖ 6 ε. (2.2)

Further, let f3 = f2−2 min(f2, ε). By (L4), f3 ∈ L. Moreover, f3 6 h. Indeed, thanks
to (2.2), f2(x) 6 h(x) + ε. So, if f2(x) > ε, then f3(x) = f2(x) − 2ε 6 h(x). On the
other hand, if f2(x) 6 ε, then f3(x) = −f2(x) 6 0 6 h(x).

Now let f4 = max(f3, 0). Then f4 ∈ L and 0 6 f4 6 h. Finally put f =
min(f4, t) ∈ L. We easily see that 0 6 f 6 h and ‖f‖ 6 t. It is enough to check that
‖h− f‖ 6 ‖h‖ − t. Let x ∈ K. If h(x) 6 ‖h‖ − t, then clearly h(x)− f(x) 6 ‖h‖ − t.
So we may assume that h(x) > ‖h‖ − t = 3ε. Then, by (2.2), f2(x) > h(x) − ε > 2ε
and hence f4(x) = f3(x) = f2(x) − 2ε > 0. Now if f4(x) > t, then f(x) = t and
h(x) − f(x) 6 ‖h‖ − t. On the other hand, if f4(x) 6 t, then f(x) = f2(x) − 2ε and
finally h(x)− f(x) = h(x)− f2(x) + 2ε 6 ‖h− f2‖+ 2ε 6 3ε = ‖h‖ − t.

Theorem 2.2. Let g ∈ L̄ be a nonzero function. Let (bn)∞n=1 be a sequence of positive
numbers such that

∞∑
n=1

bn = ‖g‖. (2.3)
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Then there exists a sequence (fn)∞n=1 of elements of L such that ‖fn‖ = bn for any
n > 1 and g =

∑∞
n=1 fn. What is more, {g > 0} =

⋂∞
n=1{fn > 0} and {g 6 0} =⋂∞

n=1{fn 6 0}. In particular, |g| =
∑∞

n=1 |fn|.

Proof. First assume that g > 0. Since bn > 0 for each n > 1 and thanks to (2.3),∑n
k=1 bk < ‖g‖. An easy use of the induction argument ensures us that, thanks to

Lemma 2.1, there exists a sequence (fn)∞n=1 of elements of L such that fn > 0,∑n
k=1 fk 6 g, ‖fn‖ = bn and∥∥∥g − n∑

k=1

fk

∥∥∥ = ‖g‖ −
n∑

k=1

bk (2.4)

for every n > 1. Indeed, if f1, . . . , fn−1 are found, apply Lemma 2.1 for h = g −∑n−1
k=1 fn−1 and t = bn to obtain the function fn.
We conclude from (2.3) and (2.4) that the series

∑∞
n=1 fn is uniformly convergent

to g and therefore in case of nonnegative g the proof is finished.
Now let g be an arbitrary element of L̄. By (L3) and the continuity of the operators

f 7→ f+ and f 7→ f−, g+, g− ∈ L̄. Observe that

g+ · g− ≡ 0 and ‖g‖ = max(‖g+‖, ‖g−‖). (2.5)

The second of the above connections, combined with (2.3), implies that there exist
two sequences (b+n )∞n=1 and (b−n )∞n=1 of positive numbers such that

∞∑
n=1

b+n = ‖g+‖,
∞∑

n=1

b−n = ‖g−‖ and max(b+n , b
−
n ) = bn. (2.6)

Now we may apply the first part of the proof for g+ and g− to obtain two corresponding
sequences (f+

n )∞n=1 and (f−n )∞n=1 of nonnegative elements of L satisfying the equalities
g± =

∑∞
n=1 f

±
n and ‖f±n ‖ = b±n (n > 1). To end the construction, put fn = f+

n − f−n
and observe that:

(i) f+
n · f−n ≡ 0 (thanks to (2.5) and the inequality 0 6 f±n 6 g±), and hence
‖fn‖ = max(‖f+

n ‖, ‖f−n ‖) = bn (by (2.6)),
(ii) if g(x) > 0 [g(x) 6 0], then g−(x) = 0 [g+(x) = 0], so f−n (x) = 0 [f+

n (x) = 0] for
each n > 1 and therefore fn(x) > 0 [fn(x) 6 0].

3. SOME APPLICATIONS

Theorem 2.2 cannot be applied for L being the space of all real-valued polynomials
on the interval [0, 1], because this space does not satisfy the crucial condition (2.1).
However, it is well known that if (K, d) is a compact metric space, then the space
Lip(K) consisting of all real-valued Lipschitz functions on K (g : K → R belongs to
Lip(K) if there exists a constant M ∈ [0,∞) such that |g(x) − g(y)| 6 Md(x, y) for
every x, y ∈ K) is a subalgebra of C(K) which separates points of K. What is more,
if f ∈ Lip(K), then min(|f |, 1) ∈ Lip(K).
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So, a special case of Theorem 2.2 is the following statement.

Proposition 3.1. If (K, d) is a nonempty compact metric space and g ∈ C(K), then
there exists a sequence (fn)∞n=1 of real-valued Lipschitz functions such that ‖g‖ =∑∞

n=1 ‖fn‖, g =
∑∞

n=1 fn and |g| =
∑∞

n=1 |fn|.

Proposition 3.1 is applied in [9] to establish an important property of the function
linear space CFL(U), whose elements are the uniform limits of linear combinations
of maps of the form U 3 x 7→ d(x, y) − d(x, z) ∈ R with y, z ∈ U, generated by the
Urysohn universal metric space (U, d) (U is uniquely determined by its diameter and
the following properties: it is separable and complete, every separable metric space of
diameter no greater than diam U is isometrically embeddable in U, and every isometric
map between finite subsets of U is extendable to an isometry of U), namely: if K is
a compact subset of U and f : K → R is a continuous function, then there exists an
extension F ∈ CFL(U) of f such that ‖F‖ = ‖f‖. This result enables us to build an
example of an adjoint linear isomoprhism between dual Banach spaces which is an
isometry on the weakly-* dense subspace but not on the whole domain.

In case when L is a subspace of C(K), the closure of L can be nicely described.
To do that, we put the definition.

Definition 3.2. The null set of the space L is the set N (L) = {x ∈ K : f(x) =
0 for each f ∈ L}. The equivalence relation R(L) on K induced by L is defined by the
formula:

(x, y) ∈ R(L) ⇐⇒ ∀f ∈ L : f(x) = f(y) (x, y ∈ K).

The algebra generated by L is the algebra

A(N (L),R(L)) = {g ∈ C(K)| g
∣∣
N (L)

≡ 0, ∀(x, y) ∈ R(L) : g(x) = g(y)}.

The sets N (L) and R(L) are closed subsets of K and K × K, respectively, and the
algebra A(N (L),R(L)) is a closed subalgebra of C(K), possibly with no unit.

The following result, which has entered folklore (cf. [3]), explains the terminology.
For the reader’s convenience, we give a short proof.

Proposition 3.3. The closure of the space L (satisfying the condition (2.1)) in the
space C(K) coincides with A(N (L),R(L)).

Proof. Clearly L̄ ⊂ A(N (L),R(L)). To see the inverse inclusion, take g ∈
A(N (L),R(L)). Observe that:

∀x, y ∈ K ∃f ∈ L : f(x) = g(x), f(y) = g(y). (3.1)

Indeed, the following five conditions are possible:

(1◦) x, y ∈ N (L): take f = 0.
(2◦) x ∈ N (L) and y /∈ N (L) (or conversely): there exists f0 ∈ L such that f0(y) 6= 0.

Now it is enough to put f = g(y)
f0(y)f0.

(3◦) x, y /∈ N (L) and (x, y) ∈ R(L): do the same as in (2◦).
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(4◦) x, y /∈ N (L), (x, y) /∈ R(L) and g(x) = g(y): there exist f1, f2 ∈ L such
that f1(x) · f2(y) 6= 0. Let f0 = |f1| + |f2|. By (L1), f0 ∈ L. Let m =
min(f0(x), f0(y)) > 0 and finally put f = g(x)

m min(f0,m) ∈ L.
(5◦) x, y /∈ N (L), (x, y) /∈ R(L) and g(x) 6= g(y): there exists f1 ∈ L such that

f1(x) 6= f1(y). By the proof of (4◦), there is f2 ∈ L such that f2(x) = f2(y) =
g(x)− g(x)−g(y)

f1(x)−f1(y)f1(x). Now it is easy to check that f(x) = g(x) and f(y) = g(y)

for f = g(x)−g(y)
f1(x)−f1(y)f1 + f2 ∈ L.

Having (3.1), it suffices to apply the property (?).

Now we shall give some illustrative examples dealing with the subject.

Examples 3.4. In everywhere below, Ω is a nonempty compact Hausdorff space and
each of the spaces L appearing below consists of continuous real-valued functions on
Ω and satisfies (2.1).

A. Suppose Ω is totally disconnected. The space L of all functions with finite images
is dense in C(Ω).

B. Let U be an open nonempty subset of Ω and let L constist of all functions whose
support is contained in U ; that is, f ∈ L iff supp f := f−1(R \ {0}) ⊂ U . Then L̄
constists of all functions vanishing on Ω \ U .

C. Suppose Ω is metrizable and d is a metric on Ω which induces the topology of Ω.
For a fixed p > 0 let L be the space of all functions satisfying the Hölder condition
with exponent p. (L may not be dense in C(Ω) for p > 1. It may even constists
only of constant functions, as it is in case of Ω = [0, 1] with the natural metric.)

D. Let Ω and d be as in the previous example and let L be the space of all the so-called
little Lipschitz functions on Ω (cf. [12, Chapter 3]); that is, f ∈ L iff for every
ε > 0 there is δ > 0 such that |f(x) − f(y)| 6 εd(x, y) whenever d(x, y) 6 δ.
(L may consists only of constant functions. See [12] for utility of this space.)

E. Let Ω = [a, b] ⊂ R and let L be the space of all piecewise affine functions. Then
L is dense in C(Ω) and it is not an algebra.

F. Let A be a countable subset of Ω and let L constist of all f such that
∑

a∈A |f(a)| <
+∞. L is a proper (nonclosed) ideal in C(Ω). One may show that L is dense in
C(Ω) provided the topology of A is discrete. (Indeed, in the latter case L separates
points of Ω and does not vanish at every point.)

We end the paper with the note that condition (2.1) is crucial in the classical
theory of the Daniell-Stone integral (cf. [8]) and therefore we believe our result may
find application there.
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