FOUR POSITIVE PERIODIC SOLUTIONS
OF A DISCRETE TIME LOTKA-VOLterra
COMPETITIVE SYSTEM
WITH HARVESTING TERMS

Xinggui Liu, Yaping Ren, Yongkun Li

Abstract. In this paper, by using Mawhin’s continuation theorem of coincidence degree theory, we establish the existence of at least four positive periodic solutions for a discrete time Lotka-Volterra competitive system with harvesting terms. An example is given to illustrate the effectiveness of our results.

Keywords: discrete systems, Lotka-Volterra competitive models, coincidence degree, harvesting terms.

Mathematics Subject Classification: 34A34, 39A10.

1. INTRODUCTION

Generally, the model of a two species Lotka-Volterra competitive with harvesting terms is described as [1, 2]:

\[
\begin{align*}
\dot{x} &= x(a_1 - b_1 x - c_1 y) - h_1, \\
\dot{y} &= y(a_2 - b_2 y - c_2 x) - h_2,
\end{align*}
\]

(1.1)

where \(x\) and \(y\) are functions of time representing the densities of two competitive species, respectively; \(h_i, i = 1, 2\) are exploited terms of \(i\)th species standing for harvest; \(a_i, b_i, c_i, i = 1, 2\) are the intrinsic growth rates, death rate, competitive rates, respectively. Moreover, we always assume that all of the parameters are positive constants.

Considering the inclusion of the effect of a changing environment, that is the following model:

\[
\begin{align*}
\dot{x}(t) &= x(t)(a_1(t) - b_1(t)x(t) - c_1(t)y(t)) - h_1(t), \\
\dot{y}(t) &= y(t)(a_2(t) - b_2(t)y(t) - c_2(t)x(t)) - h_2(t),
\end{align*}
\]

(1.2)
where $a_i(t), b_i(t), c_i(t)$ and $h_i(t), i = 1, 2$ are all positive continuous ω-periodic functions.

Since many authors [3–6] have argued that the discrete time models governed by difference equations are more appropriate than the continuous ones when the populations have non-overlapping generations, also, since discrete time models can also provide efficient computational models of continuous models for numerical simulations, it is reasonable to study a discrete time predator-prey system with harvesting terms governed by difference equations. One of the way of deriving difference equations modelling the dynamics of populations with non-overlapping generations is based on appropriate modifications of the corresponding models with overlapping generations [7,8]. In this approach, differential equations with piecewise constant arguments have proved to be useful.

Following the same idea and the same method [7,8], one can easily derive the following discrete analogues of system (1.2), that is

$$\begin{align*}
 x(k+1) &= x(k) \exp \left[a_1(k) - b_1(k)x(k) - c_1(k)y(k) - \frac{h_1(k)}{x(k)} \right], \\
 y(k+1) &= y(k) \exp \left[a_2(k) - b_2(k)y(k) - c_2(k)x(k) - \frac{h_2(k)}{y(k)} \right].
\end{align*}$$

(1.3)

where $a_i(k), b_i(k), c_i(k), h_i(k), i = 1, 2$ are positive ω-periodic sequences, ω is a fixed positive integer denoting the common period of all the parameters in system (1.3).

In recent years, the coincidence degree has been applied to study the existence of a periodic solution or multiple periodic solutions in delayed differential population models and many good results have been obtained, see e.g. [9–15]. However, there are few papers published on multiple periodic solutions for discrete models governed by difference equations. For system (1.3), to the best of our knowledge, there is no result on multiple periodic solutions in the literature. So, in this paper, our purpose is to study the existence of four positive periodic solutions for system (1.3) by employing the continuation theorem of coincidence degree theory. Since the discrete system is more difficult to deal with, we will employ new arguments in our discussion.

The organization of this paper is as follows. In Section 2, we introduce some notations and definitions, and state some preliminary results needed in later sections. In Section 3, we shall use Mawhin’s continuation theorem [16] to establish the existence of periodic solutions of (1.3). In Section 4, we will give an example to illustrate the effectiveness of our results.

2. PRELIMINARIES

In this section, we shall introduce some notations and definitions, and state some preliminary results.

Let X and Z be real normed vector spaces. Let $L : \text{Dom } L \subset X \to Z$ be a linear mapping and $N : X \times [0, 1] \to Z$ be a continuous mapping. The mapping L will be called a Fredholm mapping of index zero if $\dim \ker L = \text{codim } \text{im } L < \infty$ and
Im \(L \) is closed in \(Z \). If \(L \) is a Fredholm mapping of index zero, then there exists continuous projectors \(P : X \to X \) and \(Q : Z \to Z \) such that \(\text{Im } P = \text{Ker } L \) and \(\text{Ker } Q = \text{Im } L = \text{Im } (I - Q) \), and \(X = \text{Ker } L \oplus \text{Ker } P, Z = \text{Im } L \oplus \text{Im } Q \). It follows that \(L|_{\text{Dom } L \cap \text{Ker } P} : (I - P)X \to \text{Im } L \) is invertible and its inverse is denoted by \(K_P \).

If \(\Omega \) is a bounded open subset of \(X \), the mapping \(N \) is called \(L \)-compact on \(\overline{\Omega} \times [0, 1] \); if \(QN(\Omega \times [0, 1]) \) is bounded and \(K_P(I - Q)N : \Omega \times [0, 1] \to X \) is compact. Because \(\text{Im } Q \) is isomorphic to \(\text{Ker } L \), there exists an isomorphism \(J : \text{Im } Q \to \text{Ker } L \).

The notation \(\text{deg} \) following means \textit{coincidence degree} [16], the Mawhin’s continuous theorem [16, p. 40] is given as follows:

\textbf{Lemma 2.1} ([16]). Let \(L \) be a Fredholm mapping of index zero and let \(N \) be \(L \)-compact on \(\Omega \times [0, 1] \). Assume:

(a) for each \(\lambda \in (0, 1) \), every solution \(x \) of \(Lx = \lambda N(x, \lambda) \) is such that \(x \notin \partial \Omega \cap \text{Dom } L \);

(b) \(QN(x, 0) \neq 0 \) for each \(x \in \partial \Omega \cap \text{Ker } L \);

(c) \(\text{deg}(JQN(x, 0), \Omega \cap \text{Ker } L, 0) \neq 0 \).

Then \(Lx = N(x, 1) \) has at least one solution in \(\overline{\Omega} \cap \text{Dom } L \).

For the sake of convenience, we introduce the following notation:

\[
L_{\omega} = \{0, 1, \cdots, \omega - 1\}, \quad Z_0 = \{0, \pm 1, \pm 2, \cdots, \pm n, \cdots\},
\]

\[
g^L = \min_{k \in L_{\omega}} g(k), \quad g^M = \max_{k \in L_{\omega}} g(k), \quad \bar{g} = \frac{1}{\omega} \sum_{k=0}^{\omega-1} g(k),
\]

where \(g(k) \) is a \(\omega \)-periodic sequence of real numbers defined for \(k \in Z_0 \).

\textbf{Lemma 2.2} ([14]). Let \(x > 0, y > 0, z > 0 \) and \(x > 2\sqrt{yz} \), for the functions

\[
f(x, y, z) = \frac{x + \sqrt{x^2 - 4yz}}{2z} \quad \text{and} \quad g(x, y, z) = \frac{x - \sqrt{x^2 - 4yz}}{2z},
\]

the follow assertions hold.

(1) \(f(x, y, z), g(x, y, z) \) are monotonically increasing and monotonically decreasing on the variable \(x \), respectively.

(2) \(f(x, y, z), g(x, y, z) \) are monotonically decreasing and monotonically increasing on the variable \(y \), respectively.

(3) \(f(x, y, z), g(x, y, z) \) are monotonically decreasing and monotonically increasing on the variable \(z \), respectively.

In order to apply coincidence to our study system (1.3), we will state the following definitions and propositions. For details and proof, see [15].

Define \(I^w = \{u(k) = (u_1(k), u_2(k))^T : u_i(k + \omega) = u_i(k), k \in Z_0, i = 1, 2\} \). For \(a = (a_1, a_2) \in R^2 \), define \(|a| = \max\{a_1, a_2\} \). Let \(\|u(k)\| = \max\{|u(k)|, u(k) \in I^w\} \). Equipped with above norm \(\|\cdot\| \), \(l_{\omega} \) is a finite-dimensional Banach space.
Let
\[l_0^\omega = \left\{ u(k) = \{(u_1(k), u_2(k))^T \in l^\omega : \sum_{k=0}^{\omega-1} u_i(k) = 0, i = 0, 1, 2 \} \right\}, \]
\[l_c^\omega = \left\{ u(k) = \{(u_1(k), u_2(k))^T \in l^\omega : u_i(k) = u_i \in R, i = 0, 1, 2 \} \right\}, \]
then it follows that \(l_0^\omega \) and \(l_c^\omega \) are both closed linear subspaces of \(l^\omega \) and
\[l^\omega = l_0^\omega \bigoplus l_c^\omega, \quad \dim l_c^\omega = 2. \]

Now we state the main result in this paper.
Throughout this paper, we assume that:
\[(H_1) \quad a_1^L - \frac{c_1^M a_1^M}{b_2^L} > 2 \sqrt{b_1^M h_1^M}; \]
\[(H_2) \quad a_2^L - \frac{c_2^M a_1^M}{b_1^L} > 2 \sqrt{b_2^M h_2^M}. \]
For convenience, we note
\[A_1^\pm = \frac{a_1^L - \frac{c_1^M a_1^M}{b_2^L} \pm \sqrt{[a_1^L - \frac{c_1^M a_1^M}{b_2^L}]^2 - 4b_1^M h_1^M}}{2b_1^M}, \]
\[A_2^\pm = \frac{a_2^L - \frac{c_2^M a_1^M}{b_1^L} \pm \sqrt{[a_2^L - \frac{c_2^M a_1^M}{b_1^L}]^2 - 4b_2^M h_2^M}}{2b_2^M}. \]

3. EXISTENCE OF AT LEAST FOUR POSITIVE PERIODIC SOLUTIONS

In this section, by using Mawhin’s continuation theorem, we shall show the existence of at least four positive periodic solutions of (1.3).

Theorem 3.1. Assume that \((H_1)\) and \((H_2)\) hold. Then system (1.3) has at least four positive \(\omega \)-periodic solutions.

Proof. In order to use the continuation theorem of coincidence degree theory to establish the existence of solutions of (1.3), we make the substitution
\[x(k) = \exp\{u_1(k)\}, \quad y(k) = \exp\{u_2(k)\}. \tag{3.1} \]
Then system (1.3) can be reformulated as
\[\begin{cases} u_1(k+1) - u_1(k) = a_1(k) - b_1(k)e^{u_1(k)} - c_1(k)e^{u_2(k)} - \frac{h_1(k)}{e^{u_1(k)}}, \\ u_2(k+1) - u_2(k) = a_2(k) - b_2(k)e^{u_2(k)} - c_2(k)e^{u_1(k)} - \frac{h_2(k)}{e^{u_2(k)}}. \end{cases} \tag{3.2} \]
We prefer to study system (3.2) in the sequel because it is more convenient for our further discussion.

Now we define \(X = Z = l^\omega, (Lu)(k) = u(k+1) - u(k) \) and

\[
N(u, \lambda)(k) = \begin{pmatrix}
 a_1(k) - b_1(k)e^{u_1(k)} - \lambda c_1(k)e^{u_2(k)} - \frac{b_1(k)}{e^{u_1(k)}} \\
 a_2(k) - b_2(k)e^{u_2(k)} - \lambda c_2(k)e^{u_1(k)} - \frac{b_2(k)}{e^{u_2(k)}}
\end{pmatrix},
\]

for \(u \in X \) and \(k \in Z_0 \). It is trivial to see that \(L \) is a bounded linear operator and

\[
\text{Ker } L = l^\omega_0, \quad \text{Im } L = l_0^\omega
\]
as well as

\[
\dim \text{Ker } L = 2 = \text{codim Im } L;
\]
then it follows that \(L \) is a Fredholm mapping of index zero. Define

\[
P u = \frac{1}{\omega} \sum_{k=0}^{\omega-1} u(k), u \in X, \quad Q z = \frac{1}{\omega} \sum_{k=0}^{\omega-1} z(k), z \in Z.
\]

It is easy to show that \(P \) and \(Q \) are continuous projections such that

\[
\text{Im } P = \text{Ker } L, \quad \text{Im } L = \text{Ker } Q = \text{Im } (I - Q).
\]

Moreover, the generalized inverse (to \(L \)) \(K_P : \text{Im } L \to \text{Ker } P \cap \text{Dom } L \) exists and is given by

\[
K_P(z) = \sum_{s=0}^{\omega-1} z(s) - \frac{1}{\omega} \sum_{s=0}^{\omega-1} (\omega - s)z(s).
\]

Clearly, \(QN \) and \(K_P(I - Q)N \) are continuous. Since \(X \) is a finite-dimensional Banach space, one can easily show that \(K_P(I - Q)N(\bar{\Omega} \times [0,1]) \) are relatively compact for any open bounded set \(\Omega \subset X \). \(QN(\bar{\Omega} \times [0,1]) \) is bounded, and hence \(N \) is \(L \)-compact on \(\Omega \) for any open bounded set \(\Omega \subset X \). Now we reach the position to search for an appropriate open, bounded subset \(\Omega \) for the application of the continuation theorem.

In order to use Lemma 2.1, we have to find at least four appropriate open bounded subsets in \(X \). Considering the operator equation \(Lu = \lambda N(u, \lambda) \), that is

\[
\begin{align*}
 u_1(k+1) - u_1(k) &= \lambda \left[a_1(k) - b_1(k)e^{u_1(k)} - \lambda c_1(k)e^{u_2(k)} - \frac{b_1(k)}{e^{u_1(k)}} \right], \\
 u_2(k+1) - u_2(k) &= \lambda \left[a_2(k) - b_2(k)e^{u_2(k)} - \lambda c_2(k)e^{u_1(k)} - \frac{b_2(k)}{e^{u_2(k)}} \right].
\end{align*}
\]

(3.3)

Summing (3.3) from 0 to \(\omega - 1 \) gives

\[
\begin{align*}
 0 &= \lambda \sum_{k=0}^{\omega-1} \left[a_1(k) - b_1(k)e^{u_1(k)} - \lambda c_1(k)e^{u_2(k)} - \frac{b_1(k)}{e^{u_1(k)}} \right], \\
 0 &= \lambda \sum_{k=0}^{\omega-1} \left[a_2(k) - b_2(k)e^{u_2(k)} - \lambda c_2(k)e^{u_1(k)} - \frac{b_2(k)}{e^{u_2(k)}} \right].
\end{align*}
\]

(3.4)
From the above two equations, we get
\[\sum_{k=0}^{\omega-1} a_1(k) = \sum_{k=0}^{\omega-1} \left[b_1(k)e^{u_1(k)} + \lambda c_1(k)e^{u_2(k)} + \frac{h_1(k)}{e^{u_2(k)}} \right] \] \hspace{1cm} (3.5)\]
and
\[\sum_{k=0}^{\omega-1} a_2(k) = \sum_{k=0}^{\omega-1} \left[b_2(k)e^{u_2(k)} + \lambda c_2(k)e^{u_1(k)} + \frac{h_2(k)}{e^{u_1(k)}} \right]. \] \hspace{1cm} (3.6)\]

From (3.4)–(3.6), we get
\[\sum_{k=0}^{\omega-1} |u_1(k+1) - u_1(k)| \leq \sum_{k=0}^{\omega-1} \left[a_1(k) + b_1(k)e^{u_1(k)} + \lambda c_1(k)e^{u_2(k)} + \frac{h_1(k)}{e^{u_2(k)}} \right] = 2\bar{a}_1\omega \] \hspace{1cm} (3.7)\]
and
\[\sum_{k=0}^{\omega-1} |u_2(k+1) - u_2(k)| \leq \sum_{k=0}^{\omega-1} \left[a_2(k) + b_2(k)e^{u_2(k)} + \lambda c_2(k)e^{u_1(k)} + \frac{h_2(k)}{e^{u_1(k)}} \right] = 2\bar{a}_2\omega. \] \hspace{1cm} (3.8)\]

Assume that \(u = (u_1, u_2)^T \in X \) is an \(\omega \)-periodic solution of system (3.3) for some \(\lambda \in (0, 1) \). Then there exists \(\xi_i, \eta_i \in I_\omega \) such that
\[u_i(\xi_i) = \max_{k \in I_\omega} u_i(k), \quad u_i(\eta_i) = \min_{k \in I_\omega} u_i(k), \quad i = 1, 2. \] \hspace{1cm} (3.9)\]

From this and (3.4), we have
\[u_1(\eta_1 + 1) - u_1(\eta_1) = \lambda \left[a_1(\eta_1) - b_1(\eta_1)e^{u_1(\eta_1)} - \lambda c_1(\eta_1)e^{u_2(\eta_1)} - \frac{h_1(\eta_1)}{e^{u_1(\eta_1)}} \right] \geq 0 \] \hspace{1cm} (3.10)\]
and
\[u_2(\eta_2 + 1) - u_2(\eta_2) = \lambda \left[a_2(\eta_2) - b_2(\eta_2)e^{u_2(\eta_2)} - \lambda c_2(\eta_2)e^{u_1(\eta_2)} - \frac{h_2(\eta_2)}{e^{u_2(\eta_2)}} \right] \geq 0. \] \hspace{1cm} (3.11)\]

From this, we have
\[b_1^L e^{2u_1(\eta_1)} - a_1^M e^{u_1(\eta_1)} + h_1^L < 0 \]
and
\[b_2^L e^{2u_2(\eta_2)} - a_2^M e^{u_2(\eta_2)} + h_2^L < 0, \]
which imply that
\[\ln l_i^- < u_i(\eta_i) < \ln l_i^+, \quad i = 1, 2. \] \hspace{1cm} (3.12)\]

From (3.4), we have
\[b_1^L e^{u_1(\xi_1)} < b_1(\xi_1)e^{u_1(\xi_1)} + h_1(\xi_1)e^{-u_1(\xi_1)} = a_1(\xi_1) - \lambda c_1(\xi_1)e^{u_2(\xi_1)} < a_1(\xi_1) \leq a_1^M \]

\[b_2^L e^{u_2(\xi_2)} < b_2(\xi_2)e^{u_2(\xi_2)} + h_2(\xi_2)e^{-u_2(\xi_2)} = a_2(\xi_2) - \lambda c_2(\xi_2)e^{u_1(\xi_2)} < a_2(\xi_2) \leq a_2^M. \]
and
\[b_2^\omega e^{u_2(\xi_2)} < b_2(\xi_2)e^{u_1(\xi_2)} + h_2(\xi_2)e^{-u_2(\xi_2)} = a_2(\xi_2) - \lambda_c(\xi_2)e^{u_1(\xi_2)} < a_2(\xi_2) \leq a_2^M, \]
which imply that
\[u_1(\eta_1) \leq u_1(\xi_1) < \ln \frac{a_1^M}{b_1^\omega}. \quad (3.13) \]
and
\[u_2(\eta_2) \leq u_2(\xi_2) < \ln \frac{a_2^M}{b_2^\omega}. \quad (3.14) \]

From (3.4) and (3.9), we have
\[\bar{a}_1 \omega > \sum_{k=0}^{\omega-1} h_1(k) \geq \frac{h_1(\omega)}{e^{u_1(\xi_1)}}, \]
and
\[\bar{a}_2 \omega > \sum_{k=0}^{\omega-1} h_2(k) \geq \frac{h_2(\omega)}{e^{u_2(\xi_2)}}, \]
that is
\[u_1(\xi_1) > \ln \frac{h_1}{a_1} \geq \ln \frac{h_1^\omega}{a_1^\omega}, \]
and
\[u_2(\xi_2) > \ln \frac{h_2}{a_2} \geq \ln \frac{h_2^\omega}{a_2^\omega}. \]

For \(k \in I_\omega \), from this and (3.7), (3.8), (3.13) and (3.14) gives
\[u_i(k) \geq u_i(\xi_i) - \sum_{k=0}^{\omega-1} |u_i(k+1) - u_i(k)| \geq \ln \frac{h_1}{a_1^\omega} - 2\bar{a}_1 \omega := H_1^i, \quad i = 1, 2, \quad (3.15) \]
and
\[u_i(k) \leq u_i(\eta_i) + \sum_{k=0}^{\omega-1} |u_i(k+1) - u_i(k)| < \ln \frac{a_i^M}{b_i^\omega} + 2\bar{a}_i \omega := H_2^i, \quad i = 1, 2. \quad (3.16) \]

From (3.4) and (3.9), we have
\[u_1(\xi_1 + 1) - u_1(\xi_1) = \lambda \left[a_1(\xi_1) - b_1(\xi_1)e^{u_1(\xi_1)} - \lambda c_1(\xi_1)e^{u_2(\xi_1)} - \frac{h_1(\xi_1)}{e^{u_1(\xi_1)}} \right] \leq 0 \]
and
\[u_2(\xi_2 + 1) - u_2(\xi_2) = \lambda \left[a_2(\xi_2) - b_2(\xi_2)e^{u_2(\xi_2)} - \lambda c_2(\xi_2)e^{u_1(\xi_2)} - \frac{h_2(\xi_2)}{e^{u_2(\xi_2)}} \right] \leq 0. \]
From this, we have
\[b_1^M e^{2u_1(\xi_1)} = \left[a_1^L - \frac{c_1^M a_2^M}{b_2^L} \right] e^{u_1(\xi_1)} + h_1^M > 0 \]
and
\[b_2^M e^{2u_2(\xi_2)} = \left[a_2^L - \frac{c_2^M a_1^M}{b_1^L} \right] e^{u_2(\xi_2)} + h_2^M > 0, \]
which imply that
\[u_1(\xi_1) < \ln A_1^- \quad \text{or} \quad u_1(\xi_1) > \ln A_1^+ \quad (3.17) \]
and
\[u_2(\xi_2) < \ln A_2^- \quad \text{or} \quad u_2(\xi_2) > \ln A_2^+. \quad (3.18) \]
By the Lemma 2.2, it is easy to verify that
\[H_i^1 < \ln l_i^- < \ln A_i^- < \ln A_i^+ < \ln l_i^+ < H_i^2, \quad i = 1, 2, \]
where
\[l_i^\pm = \frac{a_i^M \pm \sqrt{(a_i^M)^2 - 4b_i^L h_i^L}}{2b_i^L}, \quad i = 1, 2. \]
Clearly, \(A_i^\pm, H_i^1, H_i^2, l_i^\pm, i = 1, 2, \) are independent of \(\lambda. \)
Now let us consider \(QN(u, 0) \) with \(u = (u_1, u_2)^T \in R^2. \) Note that
\[QN(u_1, u_2; 0) = \begin{pmatrix} \bar{a}_1 - \bar{b}_1 e^{u_1} - \frac{h_1}{e^{u_1}} \\ \bar{a}_2 - \bar{b}_2 e^{u_2} - \frac{h_2}{e^{u_2}} \end{pmatrix}. \]
Since \(H_1 \) and \(H_2 \) hold, then \(\bar{a}_i > 2\sqrt{b_i h_i}, i = 1, 2, \) we can show that \(QN(u_1, u_2; 0) \) has four distinct solutions:
\[(u_1^1, u_2^1) = (\ln x_-, \ln y_-), \quad (u_1^2, u_2^2) = (\ln x_-, \ln y_+), \]
\[(u_1^3, u_2^3) = (\ln x_+, \ln y_-), \quad (u_1^4, u_2^4) = (\ln x_+, \ln y_+), \]
where
\[x_\pm = \frac{\bar{a}_1 \pm \sqrt{(\bar{a}_1)^2 - 4\bar{b}_1 \bar{h}_1}}{2\bar{b}_1}, \quad y_\pm = \frac{\bar{a}_2 \pm \sqrt{(\bar{a}_2)^2 - 4\bar{b}_2 \bar{h}_2}}{2\bar{b}_2}. \]
It is easy to verify that
\[H_1^1 < \ln l_1^- < \ln x_- < \ln A_1^- < \ln A_1^+ < \ln x_+ < \ln l_1^+ < H_1^2 \]
and
\[H_2^1 < \ln l_2^- < \ln y_- < \ln A_2^- < \ln A_2^+ < \ln y_+ < \ln l_2^+ < H_2^2. \]
Let

\[\Omega_1 = \left\{ u = (u_1, u_2)^T \in X \middle| \begin{array}{l} u_1(k) \in (\ln l_1^-, \ln A_1^-) \\ u_2(k) \in (\ln l_2^-, \ln A_2^-) \end{array} \right\}, \]

\[\Omega_2 = \left\{ u = (u_1, u_2)^T \in X \middle| \begin{array}{l} u_1(k) \in (\ln l_1^-, \ln A_1^-) \\ \min_{k \in I^\alpha} u_2(k) \in (\ln l_2^-, \ln l_2^+) \\ \max_{k \in I^\alpha} u_2(k) \in (\ln A_2^+, \ln H_2^-) \end{array} \right\}, \]

\[\Omega_3 = \left\{ u = (u_1, u_2)^T \in X \middle| \begin{array}{l} \min_{k \in I^\alpha} u_1(k) \in (\ln l_1^-, \ln l_1^+) \\ \max_{k \in I^\alpha} u_1(k) \in (\ln A_1^+, \ln H_1^-) \\ \min_{k \in I^\alpha} u_2(k) \in (\ln l_2^-, \ln l_2^+) \\ \max_{k \in I^\alpha} u_2(k) \in (\ln A_2^+, \ln H_2^-) \end{array} \right\}, \]

\[\Omega_4 = \left\{ u = (u_1, u_2)^T \in X \middle| \begin{array}{l} \min_{k \in I^\alpha} u_1(k) \in (\ln l_1^-, \ln l_1^+) \\ \max_{k \in I^\alpha} u_1(k) \in (\ln A_1^+, \ln H_1^-) \\ \min_{k \in I^\alpha} u_2(k) \in (\ln l_2^-, \ln l_2^+) \\ \max_{k \in I^\alpha} u_2(k) \in (\ln A_2^+, \ln H_2^-) \end{array} \right\}. \]

It is easy to see that \((u_1^i, u_2^i) \in \Omega_i, i = 1, 2, 3, 4\) and \(\Omega_i\) are open bounded subset of \(X\). With the help of (3.10)-(3.20), it is not difficult to verify that \(\Omega_i \cap \Omega_j = \emptyset, i \neq j\) and \(\Omega_i\) satisfies condition (a) of Lemma 2.1. Moreover, when \(u \in \partial \Omega_i \cap \text{Ker} L, i = 1, 2, 3, 4, QN(u, 0) \neq (0, 0)^T\), so condition (b) of Lemma 2.1 holds.

Finally, we shall show that condition (c) of Lemma 2.1 holds. Since \(\text{Ker} L = \text{Im} Q\), we can take \(J = I\). A direct computation gives, for \(i = 1, 2, 3, 4\),

\[
\text{deg} \left\{ JQN(u, 0), \Omega_i \cap \text{Ker} L, (0, 0)^T \right\} = \text{deg} \left(\begin{array}{cc} \bar{a}_1 - \bar{b}_1 e^{u_1} & \bar{h}_1 e^{u_1} \\ \bar{b}_2 e^{u_2} & \bar{h}_2 e^{u_2} \end{array} \right)^T_{\Omega_i} \cap \text{Ker} L, (0, 0)^T = \text{sign} \begin{vmatrix} -\bar{b}_1 e^{u_1} + \bar{h}_1 e^{u_1} & 0 \\ 0 & -\bar{b}_2 e^{u_2} + \bar{h}_2 e^{u_2} \end{vmatrix} = \pm 1 \neq 0.
\]

So far, we have proved that \(\Omega_i, i = 1, 2, 3, 4\) satisfies all the assumptions in Lemma 2.1. Hence, system (3.2) has at least four different \(\omega\)-periodic solutions. Thus system (1.3) has at least four different positive \(\omega\)-periodic solutions. This completes the proof of Theorem 3.1. \(\square\)
4. AN EXAMPLE

\[
\begin{align*}
 x(k+1) &= x(k) \exp \left[3 + \cos \frac{k\pi}{3} - \frac{4 + \cos \frac{k\pi}{10}}{10} x(k) - \frac{2 + \sin \frac{k\pi}{10}}{10} y(k) - \frac{9 + \sin \frac{k\pi}{20}}{20} y(k) \right], \\
 y(k+1) &= y(k) \exp \left[3 + \sin \frac{k\pi}{3} - \frac{5 + \sin \frac{k\pi}{10}}{10} y(k) - \frac{2 + \cos \frac{k\pi}{10}}{10} x(k) - \frac{2 + \sin \frac{k\pi}{50}}{50} x(k) \right].
\end{align*}
\]

Since, in this case

\[
a_1^L - c_1 M \frac{a_1^M}{b_2^L} = 2 - \frac{3}{100} \times \frac{4 \times 10}{4} = \frac{17}{10} > 1 = 2 \sqrt{b_1^L h_1^M},
\]

\[
a_2^M - c_2 M \frac{a_1^M}{b_1^L} = 2 - \frac{3}{100} \times \frac{4 \times 10}{3} = \frac{7}{5} > \frac{6}{5} = 2 \sqrt{b_2^M h_2^M}.
\]

Therefore, all conditions of Theorem 3.1 are satisfied. By Theorem 3.1, system (4.1) has at least four positive 6-periodic solutions.

REFERENCES

Four positive periodic solutions...

Xinggui Liu

Yunnan Agricultural University
Department of Applied Mathematics Kunming
Yunnan 650221
People’s Republic of China

Yaping Ren
regnaryp@yahoo.com.cn

Yunnan University of Finance and Economics
Statistics and Mathematics college
Kunming, Yunnan 650221
People’s Republic of China

Yongkun Li

Yunnan University
Department of Mathematics
Kunming, Yunnan 650221
People’s Republic of China

Received: April 19, 2010.
Revised: June 8, 2010.
Accepted: June 15, 2010.