RESEARCH PROBLEMS
FROM THE 18TH WORKSHOP ‘3IN1’ 2009

edited by Mariusz Meszka

Abstract. A collection of open problems that were posed at the 18th Workshop ‘3in1’, held on November 26-28, 2009 in Krakow, Poland. The problems are presented by Zdenek Ryjacek in “Does the Thomassen’s conjecture imply N=NP?” and “Dominating cycles and hamiltonian prisms”, and by Carol T. Zamfirescu in “Two problems on bihomogeneously traceable digraphs”.

Keywords: Hamilton-connected graph, hamiltonian graph, dominating cycle, bihomogeneously traceable graph.

Mathematics Subject Classification: 05C45, 68Q25, 05C38, 05C20.

1. DOES THE THOMASSEN’S CONJECTURE IMPLY N=NP?

Zdeněk Ryjáček
ryjacek@kma.zcu.cz
University of West Bohemia
Department of Mathematics
Czech Republic

By a graph we mean a simple loopless finite undirected graph $G = (V(G), E(G))$. A graph G is Hamilton-connected if G has a hamiltonian (x,y)-path for any $x,y \in V(G)$, and, for an integer $k \geq 1$, G is k-Hamilton-connected if $G - X$ is Hamilton-connected for any $X \subset V(G)$ with $|X| = k$. Denote $E^+(G) = \{xy | x,y \in V(G)\}$, and for $X \subset E^+(G)$ set $G + X = (V(G), E(G) \cup X)$ (i.e., X is a set of “new” edges that are “added” to G; if $e_1 = \{x,y\} \in E(G)$ and $e_2 = \{x,y\} \in X$, we consider e_1 and e_2 as parallel edges of $G + X$). A graph G is said to be k-edge-Hamilton-connected if, for any $X \subset E^+(G)$ such that $|X| = k$ and the the edges of X determine a path system, the graph $G + X$ has a hamiltonian cycle containing all edges in X. The following facts are easy to observe.

1. A graph G is 1-edge-Hamilton-connected if and only if G is Hamilton-connected.
2. A graph G is 2-edge-Hamilton-connected if and only if:
 (i) G is 1-Hamilton-connected (i.e., $G - x$ is Hamilton-connected for any vertex $x \in V(G)$), and
 (ii) for any four distinct vertices $x_1, x_2, x_3, x_4 \in V(G)$, G has a path factor consisting of 2 paths P_1, P_2 such that both P_1 and P_2 have one endvertex in $\{x_1, x_2\}$ and one endvertex in $\{x_3, x_4\}$.

3. If G is 2-edge-Hamilton-connected, then G is 4-connected.

Consider the following two decision problems.

k-E-HC

Instance: A graph G.

Question: Is G k-edge-Hamilton-connected?

k-E-HCL

Instance: A line graph G.

Question: Is G k-edge-Hamilton-connected?

(i.e., k-E-HCL is k-E-HC restricted to line graphs).

Question 1: Determine the complexity of 2-E-HCL.

The following facts are known:

- HAM
 Instance: A graph G.
 Question: Does G contain a Hamiltonian cycle?
 HAM \in NPC, even if restricted to line graphs.

- H-PATH
 Instance: A graph G and distinct vertices $u, v \in V(G)$.
 Question: Does G contain a Hamiltonian (u, v)-path?
 H-PATH \in NPC, even if restricted to line graphs [1].

- H-CONN
 Instance: A graph G.
 Question: Is G Hamilton-connected?
 H-CONN \in NPC [3].

- 1-H-CONN
 Instance: A graph G.
 Question: Is G 1-Hamilton-connected?
 1-H-CONN \in NPC [6].

Thus, a common guess would be that probably 2-E-HCL \in NPC.

Question 2: Why is Question 1 interesting?

The following conjecture was posed in [5].

Conjecture [Thomassen]. Every 4-connected line graph is Hamiltonian.

There are many known equivalent versions of the Thomassen’s conjecture; among others, we mention the following.

Theorem. The following statements are equivalent:

(i) Every 4-connected line graph is Hamiltonian.
(ii) Every 4-connected line graph is 2-edge-Hamilton-connected [4].
(iii) Every snark has a dominating cycle [2].

Thus, if the Thomassen’s conjecture is true, then a line graph \(G \) is 2-edge-Hamilton-connected if and only if \(G \) is 4-connected, implying that 2-E-HCL is polynomial. Consequently, proving the “common guess” 2-E-HCL \(\in \) NPC would mean

- disproving the Thomassen’s conjecture,
- proving the existence of a snark with no dominating cycle,

unless \(P=NP \).

REFERENCES

2. DOMINATING CYCLES AND HAMILTONIAN PRISMS

Zdeněk Ryjáček
ryjacek@kma.zcu.cz
University of West Bohemia
Department of Mathematics
Czech Republic

The prism over a graph \(G \), denoted \(G \square K_2 \), is the Cartesian product of \(G \) and \(K_2 \). It consists of two disjoint copies of \(G \) and a perfect matching connecting a vertex in one copy of \(G \) to its “clone” in the other copy.

A graph \(G \) is Hamiltonian if it has a hamiltonian cycle andtraceable if it has a hamiltonian path. Define a \(k \)-walk in a graph to be a spanning closed walk in which every vertex is visited at most \(k \) times.

The following implications are easy to verify:
G is hamiltonian ⇒ G is traceable ⇒ G□K_2 is hamiltonian ⇒ G has a 2-walk.

Thus the question whether G has a hamiltonian prism (i.e. whether G□K_2 is hamiltonian) is “sandwiched” between hamiltonicity and having a 2-walk. Specifically, the property of having a hamiltonian prism can be considered as a “relaxation” of hamiltonicity. More information about prism-hamiltonicity of a graph can be found e.g. in [1] and [2].

A dominating cycle in a graph G is a cycle C such that every edge of G has at least one vertex on C, i.e. such that the graph G − C is edgeless. Clearly, a hamiltonian cycle is dominating, and hence the property of having a dominating cycle can be considered as another relaxation of hamiltonicity.

There is a natural question whether there is any relation between these two properties.

Example 1. Let H be any 2-connected cubic nonhamiltonian graph, and let G be obtained from H by replacing every vertex of H with a triangle (such a G is sometimes called the inflation of H). Then G is a 2-connected line graph and these are known [2] to be prism-hamiltonian. On the other hand, since H is nonhamiltonian, any cycle in G has to miss at least one “new” triangle and hence G has no dominating cycle. Thus, there are “many” graphs showing that hamiltonian prism does not imply having a dominating cycle.

Example 2. The graph in the figure below shows that also the existence of a dominating cycle does not imply having hamiltonian prism.

![Graph](image)

However, all such known examples are of low toughness (recall that G is 1-tough if, for any S ⊆ V(G), the graph G − S has at most |S| components). This motivates the following question.

Conjecture. Let G be a 1-tough graph having a dominating cycle. Then G has hamiltonian prism.

Comments. Suppose that G has a dominating cycle C of even length. Set M = V(G) \ V(C) and N = {x ∈ V(C) | x has a neighbor in M}. Then the graph induced by M ∪ N has a matching containing all vertices from M (this follows by the toughness assumption and by the Hall’s theorem). Using this matching, it is easy to construct a hamiltonian cycle in G□K_2.

The difficult case is when all dominating cycles in G are of odd length.
3. TWO PROBLEMS ON BIHOMOGENEOUSLY TRACEABLE DIGRAPHS

Carol T. Zamfirescu
czamfirescu@gmail.com
Technische Universität Dortmund
Vogelpothsweg 87, 44221 Dortmund
Germany

We concern ourselves here exclusively with simple finite oriented graphs (i.e. digraphs with no multiple edges, a finite number of vertices, and without cycles of length 2), calling these simply graphs. A graph is called homogeneously traceable, if for every vertex \(v \) there exists a hamiltonian path starting at \(v \). If, additionally, the graph has the property that in every vertex a hamiltonian path ends, we call it bihomogeneously traceable. In this setting, and in a graph on \(n \) vertices, arc-minimality (or 2-diregularity) means that the graph has precisely \(2n \) edges (i.e. every vertex has in-degree 2 and out-degree 2). We remark that bihomogeneous traceability does not imply hamiltonicity, for instance hypohamiltonian graphs are non-hamiltonian and bihomogeneously traceable.

Z. Skupień [3] presented in 1981 an infinite family of arc-minimal non-hamiltonian bihomogeneously traceable graphs, featuring graphs of all orders greater or equal to 7. Another such infinite family of graphs (but not arc-minimal) was provided independently by S. Hahn and T. Zamfirescu [1] in the same year.

In 1983, L. E. Penn and D. Witte [2] proved that the cartesian product of two oriented cycles of length \(a \) and \(b \) is hypohamiltonian (whence, non-hamiltonian and bihomogeneously traceable) if and only if there exist relatively prime numbers \(m, n \in \mathbb{N} \) such that \(am + nb = ab - 1 \). We note that these graphs are also arc-minimal.

In their 1981 paper, Hahn and Zamfirescu presented two planar non-hamiltonian bihomogeneously traceable graphs, one of which is arc-minimal, and asked the natural question whether infinitely many such graphs do exist. Very recently it was proven that this is indeed the case, see [4].

The following problems, however, are still open.

Problem 1. Is there an infinite family of planar arc-minimal non-hamiltonian bihomogeneously traceable oriented graphs?

Problem 2. Are there such graphs on all orders greater than some integer? Even if one removes the condition of arc-minimality, this problem is still open.
REFERENCES

Mariusz Meszka
meszka@agh.edu.pl

AGH University of Science and Technology
Faculty of Applied Mathematics
al. Mickiewicza 30, 30-059 Cracow, Poland

Received: November 28, 2009.