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ON SOME DYNAMICAL RECONSTRUCTION PROBLEMS

FOR A NONLINEAR SYSTEM

OF THE SECOND-ORDER

Marina Blizorukova, Vyacheslav Maksimov

Abstract. The problem of reconstruction of unknown characteristics of a nonlinear sys-
tem is considered. Solution algorithms stable with respect to the informational noise and
computational errors are specified. These algorithms are based on the method of auxiliary
positionally controlled models.
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1. INTRODUCTION

Problems of determination of input of system through equation’s solutions are of-
ten called reconstruction (identification) problems. Therefore it is assumed that the
input information (results of measurements of current phase states of a dynamical
system) are forthcoming in the process. As to unknown parameters, they should be
reconstructed in the process too. One of the methods of solving similar problems
was suggested in [3]. This method was based on the ideas of the theory of ill-posed
problems [7] and actually reduces the identification problem to the control problem
for an auxiliary dynamical system-model [2]. Regularization of the problem under
consideration is locally realized during the process of choice of positional control in
the system-model. The method mentioned above was applied to a number of prob-
lems described by some classes of ordinary differential equations [4, 6] as well as by
equations with distributed parameters [5]. Different system’s characteristics varying
in time were under reconstruction, namely, unknown discontinuous inputs, initial and
boundary data, distributed disturbances, coefficients of an elliptic operator and so
on. In the present paper, using the methods of dynamical identification worked out
earlier (see the cited literature), we indicate two algorithms for the reconstruction
of nonsmooth inputs acting upon a nonlinear system of the second order. These
algorithms are stable with respect to informational noises and calculational errors.
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2. STATEMENT OF THE PROBLEMS. APPROACH TO THE SOLUTION

Consider a system described by the equations:

ẋ1(t) = k(t)x2(t) + x1(t)(λx2(t) − ν),

ẋ2(t) = −k(t)x2(t) − (λx1(t) + µ)x2(t) + γ(t),
(2.1)

t ∈ T = [t0, ϑ], x1(t0) = x10, x2(t0) = x20.

This model describes the process of diffusion of innovation [1]. It is assumed that
constants λ, ν, µ are known but the function γ(t) and (or) the function k(t) are
uncertain. We consider the situation when a function γ(t) (a measurable Lebesque
function satisfying the condition γ(t) ∈ P = [−f, f ], t ∈ T ) acts upon the system.
Here f = const ∈ (0, +∞). This function as well as the solution of system (2.1)
corresponding to it are unknown. At discrete, frequent enough, time moments

τi ∈ ∆ = {τi}
m
i=0, τi+1 = τi + δ, τ0 = t0, τm = ϑ

the value of z(τi) is inaccurately measured. Results of measurements (elements ξh
i ∈

Rn) satisfy the inequalities

|z(τi) − ξh
i |n ≤ h, (2.2)

where h ∈ (0, 1) is a level of informational noise, |x|1 = |x| is a modulus of the number
x, |y|2 is Euclidean norm of the vector y ∈ R2. We consider two cases. In the first
case we assume that at moment τi the coordinate x1(τi) is measured, i.e.

z(τi) = x1(τi), (2.3)

and in the second one the pare of these coordinates x1(τi) and x2(τi) are measured.
Then

z(τi) = {x1(τi), x2(τi)}. (2.4)

It is required to indicate (a first case) an algorithm allowing us to reconstruct unknown
coordinate x2(t) and unknown input γ(t) (Problem 1) or (a second case) the function
k(t) and input γ(t) (Problem 2). This is problem being investigated in the present
paper.

3. SOLVING METHOD

In Figure 1, the scheme of the solving algorithms for the problems of dynamical
reconstruction based on the approach mentioned above is shown.

System (2.1) is accompanied “in real time” by a certain artificial computer-
-modelled closed-loop control system M with a phase trajectory wh(t) and a control
uh(t). Then an algorithm forming a feedback control

uh(t) = uh(t, ξh(t), wh(t)) (3.1)
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system (2.1)

U M-uh(t) -wh(t)

6

� γ(t)ξh(t)

-

Fig. 1. The scheme of the solving algorithms

for the model M ensuring the output wh(t) (or the control uh(·)) to estimate in an
appropriate sense the unknown parameters x2(t), γ(t) in Problem 1 and k(t), γ(t) in
Problem 2 is indicated.

Thus, in accordance with the methods described in [3,4,6] Problems 1 and 2 may
be formulated as follows. In the sequel, a family of partitions

∆h = {τi,h}
mh

h=0, τi+1,h = τi,h + δ(h), τ0,h = t0, τmh,h = ϑ

of the interval T is assumed to be fixed.
Problem 1. It is required to indicate differential equations of the model M

ẇh(t) = f1(ξ
h
i , wh(τi), u

h
i ), (3.2)

t ∈ δh,i = [τi,h, τi+1,h), τi = τi,h,

wh(t0) = wh
0 , wh(t) ∈ R2, wh = {wh

1 , wh
2},

and the rule of choice of controls uh
i at moments τi being a mapping of the form

U1 : {τi, ξ
h
i , wh(τi)} → uh

i = {uh
i1, u

h
i2} ∈ R2 (3.3)

such that
ϑ

∫

t0

|uh
1 (t) − x2(t)|

2 dt → 0,

ϑ
∫

t0

|uh
2(t) − γ(t)|2 dt → 0 (3.4)

as h tends to 0. Here uh(t) = {uh
1(t), uh

2 (t)}, uh
1(t) = uh

i1, uh
2(t) = uh

i2 for t ∈ δh,i.
Problem 2. It is required to indicate differential equations of the model M

ẇh(1)(t) = f2(t, ξ
h
i , wh(1)(τi), v

h
i ), (3.5)

t ∈ δh,i = [τi,h, τi+1,h), wh(1)(t0) = w
h(1)
0 , wh(1)(t) ∈ R2, wh(1) = {w

h(1)
1 , w

h(1)
2 },

and the rule of choice of control vh
i at moments τi being a mapping of the form

U2 : {τi, ξ
h
i , wh(1)(τi)} → vh

i = {vh
i1, v

h
i2} ∈ R2 (3.6)
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such that
ϑ

∫

t0

|vh
1 (t) − k(t)|2 dt → 0,

ϑ
∫

t0

|vh
2 (t) − γ(t)|2 dt → 0 (3.7)

as h tends to 0. Here vh(t) = {vh
1i, v

h
2i} t ∈ δh,i.

Following the terminology of [2], the mappings U1 and U2 are called the strategies
(the rules of choice of the system’s control (3.2), (3.5)).

4. ALGORITHM FOR SOLVING PROBLEM 1

Let us turn to the description of the algorithm for solving Problem 1. From the above,
it is necessary to indicate the model (3.2) and the strategy U1 (3.3) providing (3.4).
Let

P (·) = {u(·) ∈ L2(T ; R) : u(t) ∈ P for a. a. t ∈ T }.

From now on, it is assumed that we know a number K ∈ (0, +∞) such that each so-
lution {x1(t, u), x2(t, u)} (u ∈ P (·)) of equation (2.1) satisfies the following conditions

max
t0≤t≤ϑ

|x1(t, u)| ≤ K, sup
t0≤t≤ϑ

|x2(t, u)| ≤ K. (4.1)

Fix some function α(h) : (0, 1) → R+ = {r ∈ R : r ≥ 0} with the properties:

α(h) → 0, δ(h) ≤ h, h1/6/α(h) → 0 as h → 0.

This function plays the role of a regularizator (a smoothing functional). Let in
(3.2), (3.3)

f1(ξ
h
i , wh(τi), u

h
i ) = {(k(τi) + λξh

i )uh
i1 − νξh

i ,−(k(τi) + λξh
i + µ)uh

i1 + uh
i2}, (4.2)

wh
0 = {x10, x20},

uh
i1 =

{

−βih
−2/3 if |βi| ≤ Kh2/3,

−Ksignβi, otherwise,
(4.3)

uh
i2 =

{

−β
(1)
i α−1(h), if |β

(1)
i | ≤ α(h)f,

−fsignβ
(1)
i , otherwise.

(4.4)

Here

τi = τi,h, βi = (wh
1 (τi) − ξh

i )(k(τi) + λξh
i ), β

(1)
i = wh

2 (τi) − uh
i1, ξh

i ∈ R.

We introduce the following condition.

Condition 4.1. (a) Real input γ = γ(t) generates the solution x(t) = x(t, γ) of
equation (2.1) such that

inf
t∈T

|k(t) + λx1(t, γ)| ≥ c > 0.
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(b) The function k(t) is differentiable and its derivative is an element of the space
L∞(T ; R).

(c) The function γ(t)/(k(t) + λx1(t, γ)) has a bounded variation on T .

Theorem 4.2. Let the condition 4.1 be fulfilled. Then (3.4) take place under the
choice of the model equation in the form (3.2), (4.2) and of the strategy U1 in the
form (3.3), (4.3), (4.4).

Proof. The following inequality follows from results of [3] and conditions 4.1 (a) and
4.1 (b):

ϑ
∫

t0

|uh
1 (t) − x2(t)|

2 dt ≤ Ch1/3. (4.5)

Consider the value

ε(t) = |wh
2 (t) − x2(t)|

2 + α(h)

t
∫

t0

{|uh
2 (τ)|2 − |γ(τ)|2} dτ.

It is easily seen that for t ∈ δi = [τi, τi+1) the inequality is true

ε(t) ≤ ε(τi) + δ(h)

t
∫

τi

|ẇh
2 (τ) − ẋ2(τ)|2 dτ+

+

t
∫

τi

µi(τ) dτ + α(h)

t
∫

τi

{|uh
i2|

2 − |γ(τ)|2} dτ,

(4.6)

where
µi(t) = 2(wh

2 (τi) − x2(τi)(ẇ
h
2 (t) − ẋ2(t)), t ∈ δi.

Consider the value µi(t). We have for t ∈ δi

µi(t) = 2(wh
2 (τi) − x2(τi)){k(t)x2(t) − k(τi)u

h
i1 + λ(x1(t)x2(t) − ξh

i uh
1i)+

+ µλ(x2(t) − uh
i1) + uh

i2 − γ(t)} ≤

≤ C1|x2(τi) − uh
i1| +

5
∑

j=1

λji(t), t ∈ δi.

(4.7)

Here

λ1i(t) = 2β
(1)
i

(

k(t)x2(t) − k(τi)u
h
i1

)

,

λ2i(t) = 2λβ
(1)
i

(

x1(t)x2(t) − ξh
i uh

i1

)

,

λ3i(t) = 2µβ
(1)
i

(

x2(t) − uh
i1

)

,

λ4i(t) = 2β
(1)
i

(

uh
i2 − γ(t)

)

.
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Estimate each term in the right-hand part of inequality (4.7). From condition 4.1 (b)
it follows that

λ1i(t) ≤ C2{|x2(t) − uh
i1| + δ(h)}, t ∈ δi.

Consequently (see (4.5) and (4.1)),

mh−1
∑

i=0

τi+1
∫

τi

λ1i(t)dt ≤ C2

ϑ
∫

t0

{|x2(t) − uh
1 (t)| + δ(h)}dt ≤ C3(h

1/6 + δ(h)), (4.8)

mh−1
∑

i=0

δ|x2(τi) − uh
i1| ≤

ϑ
∫

t0

|x2(τ) − uh
1 (τ)| dτ ≤ C5(h

1/6 + δ(h)). (4.9)

Then, by (2.2), (4.1) we obtain

|ξh
i − x1(t)| ≤ C6(h + δ(h)), t ∈ δi.

Thus,
mh−1
∑

i=0

τi+1
∫

τi

λ2i(t) dt ≤ C7(h
1/6 + δ(h)). (4.10)

By analogy we derive

mh−1
∑

i=0

τi+1
∫

τi

λ3i(t) dt ≤ C8(h
1/6 + δ(h)). (4.11)

Note that

argmin{2β
(1)
i u + αu2 : u ∈ P} =







−β
(1)
i α−1(h), if |β

(1)
i | ≤ α(h)f,

−fsignβ
(1)
i , otherwise.

Therefore, in virtue of (4.4) we have

τi+1
∫

τi

{

λ4i(τ) + α(h){|uh
i2|

2 − |γ(τ)|2}
}

dτ = (4.12)

=

τi+1
∫

τi

{[

2(β
(1)
i , uh

i2) + α(h)|uh
i2|

2
]

−
[

2(β
(1)
i , γ(τ)) + α(h)|γ(τ)|2

]}

dτ ≤ 0.

Taking into account (4.6)–(4.12) and the inequality δ(h) ≤ h we have for all i ∈ [1 :
mh] the following estimate

ε(τi) ≤ Ch1/6.

Further arguments correspond to the standard scheme (see, for example [3, 5]). The
theorem is proved.
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5. ALGORITHM FOR SOLVING PROBLEM 2

Let us turn to the description of the algorithm for solving Problem 2. From the
above, it is necessary to indicate the model (3.5) and the strategy U2 (3.6) providing
the convergence result (3.7). Note that in this case ξi = {ξ1i, ξ2i} ∈ R2 and inequality
(2.2) have the form

(|ξ1i − x1(τi)|
2 + |ξ2i − x2(τi)|

2)1/2 ≤ h.

Fix some function α1(h) : (0, 1) → R+ (a regularizator) with the properties:

α1(h) → 0, δ(h) ≤ h, h1/6/α1(h) → 0 as h → 0.

Assume in (3.5), (3.6)

f2(ξ
h
i , vh

i ) = {vh
i1ξi2 + λξi1ξi2 − λνξi1,−vh

i1ξi2 − λξi1ξi2 − λµξi2 + vh
i2}, (5.1)

w
h(1)
0 = {x10, x20},

vh
i1 =

{

−γ0
i h−2/3, if |γ0

i | ≤ h2/3A,

−Asignγ0
i , otherwise,

(5.2)

vh
i2 =

{

−γiα
−1
1 (h), if |γi| ≤ α1(h)f,

−fsignγi, otherwise.
(5.3)

Here
τi = τi,h, γ0

i = ξi2(w
h
1 (τi) − ξh

i1), γi = wh
2 (τi) − ξh

i2.

Condition 5.1. (a) Real input γ = γ(t) generates the solution x(t) = x(t, γ) of
equation (2.1) such that

x2(t) ≥ c > 0, t ∈ T.

(b) The function k(t) satisfies condition 4.1 (b) and the following inequality

|k(t)| ≤ A, t ∈ T.

Theorem 5.2. Let condition 5.1 is fulfilled. Then the convergence result (3.7) takes
place under the choice of the model equation in the form (3.5), (5.1) and of the strategy
U2 in the form (3.6), (5.3).

Proof. The proof of this theorem is performed by the scheme used in Theorem 4.2.
In the beginning we estimate a variation of the value

ε1(t) = |w
h(1)
1 (t) − x1(t)|

2.

We have

ε1(τi+1) ≤ ε1(τi) +
∣

∣

∣

τi+1
∫

τi

(ẇ
h(1)
1 (τ) − ẋ1(τ))dτ

∣

∣

∣

2

+
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+2(w
h(1)
1 (τi)−x1(τi))

τi+1
∫

τi

{vh
i1ξi2+λξi1ξi2−λνξi1−k(t)x2(t)−λx1(t)x2(t)+λνx1(t)}dt.

In virtue of the boundedness of k(t) and γ(t) we have

sup
t∈T

|ẇh
1 (t)| ≤ K1, sup

t∈T
|ẋ1(t)| ≤ K2.

Therefore

ε1(τi+1) ≤ ε1(τi) + d0(δ(h) + h)δ(h) +
3

∑

j=1

τi+1
∫

τi

λ
(j)
i (τ) dτ,

when

λ
(1)
i (τ) = 2γ0

i (vh
i1 − k(τ)) + 2(wh

1 (τi) − ξh
i1)(ξ

h
i2 − x2(τ)),

λ
(2)
i (τ) = 2λ(wh

1 (τi) − ξh
i1)(ξ

h
i1ξ

h
i2 − x1(τ)x2(τ)),

λ
(3)
i (τ) = 2λν(wh

1 (τi) − ξh
i1)(x1(τ) − ξh

i1).

Analogously in (4.12) by virtue of (5.2) we obtain

τi+1
∫

τi

{

2γ0
i (vh

i1 − k(τ)) + h2/3{|vh
i1|

2 − |k(τ)|2}
}

dτ ≤ 0.

Therefore

τi+1
∫

τi

{

λ
(1)
i (τ)) + h2/3{|vh

i1|
2 − |k(τ)|2}

}

dτ ≤ d1(h + δ(h))δ(h).

It is easily seen that
τi+1
∫

τi

λ
(2)
i (τ) dτ ≤ d2(h + δ(h))δ(h),

τi+1
∫

τi

λ
(3)
i (τ) dτ ≤ d3(h + δ(h))δ(h).

Consequently,

ε1(τi+1) ≤ ε1(τi) + d3δ(h)(h + δ(h)).

From this we derive

ε1(τi+1) ≤ C(h + δ(h)), i ∈ [0 : mh − 1]. (5.4)
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From this, following [3, 5], we deduce

ϑ
∫

t0

|vh
1 (t) − k(t)|2dt ≤ Ch1/3. (5.5)

Consider the value

ε2(t) = |w
h(1)
2 (t) − x2(t)|

2 + α1(h)

t
∫

t0

{|vh
2 (τ)|2 − |γ(τ)|2}dτ.

It is easily seen that for t ∈ δi = [τi, τi+1) the inequality

ε2(t) ≤ ε2(τi) +

t
∫

τi

{

δ(h)|ẇ
h(1)
2 (τ) − ẋ2(τ)|2 + νi(τ) + α1(h)

(

{|vh
i2|

2 − |γ(τ)|2}
)}

dτ

is true. Here

νi(t) = ϕi(ẇ
h(1)
2 (t) − ẋ(t)), t ∈ δi,

ϕi = 2(w
h(1)
2 (τi) − ẋ(τi)).

Consider the value νi(t). For t ∈ δi from (2.1), (3.5), (4.2) we get

νi(t) =

n
∑

j=1

γji(t), (5.6)

γ1i(t) = ϕi(k(t)x2(t) − vh
i1ξi2),

γ2i(t) = λϕi(x1(t)x2(t) − ξi1ξi2),

γ3i(t) = λµϕi(x2(t) − ξi2),

γ4i(t) = 2ϕi(v
h
i2 − γ(t)).

Using (5.5), we deduce that

mh−1
∑

i=0

γ1i(t) ≤ C1(h
1/6 + δ). (5.7)

It is easily seen that

mh−1
∑

i=0

τi+1
∫

τi

(γ2i(t) + γ3i(t)) dt ≤ C2(h + δ). (5.8)
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Note that

arg min{2γiu + α1u
2 : |u| ≤ f} =

{

−γiα
−1
1 (h), if |γi| ≤ α1(h)f,

−fsignγi, otherwise.

By analogy with (4.12) we derive

τi+1
∫

τi

{γ4i(t) + α1(t){|v
h
i2|

2 − |γ(t)|2} dt ≤ C3(h + δ)δ. (5.9)

Taking into account (5.6)–(5.9), we get for all i ∈ [1 : mh] the estimate

ε2(τi) ≤ C(h1/6 + δ).

The assertion of theorem 5.2 follows from this inequality.

Example 5.3. The algorithm for solving Problem 1 was tested by a model example.
We considered system (2.1) on time interval T = [0, 2], x1, x2 ∈ R. It was assumed
that the initial state has the form x1(t) = 1, x2(t) = 2. The input was computed by
the following formulas

γ(t) = 1 + t.

At moments τi the value ξi1 = x1(τi) + h cos(Mτi), was measured. A model with
initial state w1(0) = 1 + h, w2(0) = 2− h and controls we took according (3.2), (4.2),
(4.3), (4.4). In Figures 2–4 the results of calculations are presented for the case when
k(t) = const = 0.5, λ = 3, ν = 0.1, µ = 1, f = 3, M = 10. Figure 2 corresponds to
the case when h = 0.001, Figure 3 – h = 0.1, Figure 4 – h = 0.01. In Figures 2–4 solid
(dashed) lines represent model controls v1,2(t) (the second coordinate of the system
(2.1) and the real control).

Fig. 2. h = 0.001
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Fig. 3. h = 0.01

Fig. 4. h = 0.1
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