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ON THE APPROXIMATION THEOREM
OF WONG-ZAKAI TYPE

FOR THE LASOTA OPERATOR

Antoni Leon Dawidowicz, Krystyna Twardowska

Abstract. We consider in this paper a stochastic evolution equation with Professor
A. Lasota’s operator as the infinitesimal generator of a strongly continuous semigroup of
transformations and with Hammerstein operator connected with a noise being the Wiener
process. We show that such evolution equation satisfies the Wong-Zakai type approximation
theorem. The idea of the definition of the Lasota operator has the origin in the mathematical
model of the creation and differentiation of cells in biology and medicine.
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1. INTRODUCTION

We shall show that a stochastic evolution equation with Professor A. Lasota’s operator
as the infinitesimal generator of a strongly continuous semigroup of transformations
and with Hammerstein operator connected with a noise being the Wiener process
satisfies the Wong-Zakai type approximation theorem. The original investigations of
the Lasota operator were created in the common paper of A. Lasota and J. Yorke
[9] and then by A. Lasota in paper [8]. In the paper [8], there is a new sufficient
condition for the existence of the continuous invariant and ergodic measures of the
turbulent trajectories for some semi-dynamical systems in topological spaces. The
motion described by such systems is turbulent if the trajectories are irregular and
very complicated. One of such approaches of the descriptions of such systems is
in the paper of Prodi [12], where stationary turbulences appear when a nontrivial
invariant ergodic measure exists. The existence of turbulent trajectories comes from
the Krylov-Bogolubov theorem on the existence of invariant measures and conversely,
from the individual ergodic Birkhoff theorem we get that the existence of an invariant
ergodic measure implies that almost all trajectories are irregular and complicated.
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Further in [8], A. Lasota uses the above result to a linear partial differential equation
of the first order. The equation depends on a certain parameter λ that is the Reynolds
number. For λ sufficiently small (λ < 1) the solution tends to the laminar solution.
For large values of λ (λ ≥ 2) the equation has infinitely many turbulent solutions. It is
sometimes strange because usually the turbulences appear for some nonlinear partial
differential equations of higher orders. In the proof presented in [8] the existence of
the strictly turbulent trajectory for λ ≥ 2 is proved for the subspace of functions with
bounded second derivative. The existence of invariant measure on a space V1 (see
Section 3) is proved in [4] for λ > 1. From [1] it follows that for λ = 1 a semigroup
{St} defined here in Section 2 is stable.

The definition of the Lasota operator was created by a biological and medical moti-
vation in the description of the creation and defferentiation of cells. The investigations
were created by A. Lasota and M. Ważewska-Czyżewska in paper [10].

Then the operator was examined, for example, by Z. Brzeźniak and A.L. Dawi-
dowicz [1], A.L. Dawidowicz [3], A.L. Dawidowicz and A. Poskrobko [5], K. Łoskot
[11] as well as R. Rudnicki [13]. The Lasota operator generalizes the von Foerster
operator considered, for example by A.L. Dawidowicz i N. Haribash [4], however the
von Foerster operator does not differentiate the cells with respect to age.

We shall verify that the Lasota operator satisfies the approximation theorem of
Wong-Zakai type. This theorem was proved by them for the one-dimensional case
in paper [17]. Some generalizations of the theorem exist for the stochastic evolution
eqautions, for example, in the papers of K. Twardowska [14, 15]. The approximation
theorem of the Wong-Zakai type is of great importance because it is a base for other
theorems about the properties of the solutions of such equations, e.g. about the sup-
port of measures connected with the solutions, see the paper of K. Twardowska [16],
about the invariance theorems, comparisons theorems as well as the numerical meth-
ods for solutions of such equations. The correction term appearing in the Wong-Zakai
type theorems, gives better convergence of the numerical schemes. The present results
were already partially published by the authors in paper [6] but Lemma 5.1 and the
main theorem (Theorem 5.2) were not proved in [6].

2. TURBULENCES AND INVARIANT MEASURES

The most interesting results for the Lasota operator are regarding its chaotic be-
haviours. We shall show, for example, the results from paper [5].

Let X be a topological Hausdorff space, let G be R or R+ and let St : X → X,
t ∈ G, be a family of transformations such that

S0 = I (identity), (2.1)
St+s = St ◦ Ss, for s ≥ 0, t ∈ G. (2.2)

We recall, that a family is called the semigroup of transformations if G = R+ and the
group of transformations if G = R. We shall call the semigroup {St} a semi-dynamical
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system if the below mapping is continuous with respect to (t, x):

(t, x) ∈ R+ ×X → Stx ∈ X.

Analogously the group {St}t∈R satisfying (2.1), (2.2) is called the dynamical system
if the mapping

(t, x) ∈ R×X → Stx ∈ X

is continuous with respect to (t, x).
We shall introduce the following notation for the trajectory (orbit) starting from

the point x and for the limit set:

O(x) = {St(x) : t ≥ 0},

L(x) =
⋂
t≥0

O(St(x)).

A point x ∈ X is called periodic if there exists t > 0 such that St(x) = x, so each
fixed point for St is periodic.

Definition 2.1. We say that the trajectory O(x) is strictly turbulent if:

(i) L(x) is a compact nonempty set,
(ii) L(x) does not contain periodic points.

In paper [8], A. Lasota proved the following theorem.

Theorem 2.2 ([8]). Assume that {St} is a semi-dynamical system acting on a topo-
logical Hausdorff space X and assume that there exists a number r > 0 and two
nonempty compact disjoint sets A,B ⊂ X such that

A ∪B ⊂ Sr(A) ∩ Sr(B).

Then there exists a point x0 ∈ X such that the trajectory O(x0) is strictly turbulent.

Further, from papers [5] and [8] there exists a version of Theorem 2.2 ([5]) that
can be applied for some dynamical systems, too. The system described in our section
3 is an example of such a system given by the Lasota operator.

Thus we have

Theorem 2.3 ([8]). Let {St} and {Tt} be semi-dynamical systems defined on compact
Hausdorff topological spaces X and Y , respectively. Let F : X → Y be a continuous
mapping. Assume that for each t ≥ 0 the following diagram commutes:

X X

Y Y

-St

?
F

?
F

-
Tt
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Suppose, moreover, that there exist a number r > 0 and two nonempty closed disjoint
sets A,B ⊂ X such that

A ∪B ⊂ Tr(A) ∩ Tr(B).

Then there exists a point x0 ∈ X such that the trajectory Os(x0) = {St(x0) : t ≥ 0}
is strictly turbulent.

Definition 2.4. A measure µ is invariant with respect to {St} if µ(E) = µ(S−1
t (E))

for every t and for every borel subset E of the set X.

Definition 2.5. A measure µ is called ergodic if for every borel set E, from the
condition

E = S−1
t (E) for t ≥ 0

it implies that
µ(E)(1− µ(E)) = 0.

Theorem 2.6 ([9]). If {St}, t ≥ 0, admits a strictly turbulent trajectory, then there
exists for {St}, t ≥ 0, a nontrivial ergodic invariant measure.

3. THE LASOTA OPERATOR

Let us consider the following linear partial differential equation of the first order

∂u

∂t
+ x

∂u

∂x
= λu, 0 ≤ t, 0 ≤ x <∞ (3.1)

with the following initial and boundary conditions

u(t, 0) = 0,
u(0, x) = v(x), 0 ≤ x <∞,

(3.2)

where λ > 0 is a constant.
By a solution we mean a continuous and differentiable function u(t, x), for which

this equation is satisfied for all t ≥ 0 and 0 ≤ x <∞.
Denote by V the space of all continuous and differentiable functions v : R+ → R

such that v(0) = 0. We consider also the space V1 of all continuous and differentiable
functions v : [0, 1] → R such that v(0) = 0. The space V1 is normed by the norm
defined by the formula

‖v‖V1 = sup
x∈[0,1]

|v′(x)|.

It is known, that for every v ∈ V there exists exactly one solution to the above
equation and this solution is given by the following formula:

u(t, x) = eλtv(xe−t), 0 ≤ x <∞. (3.3)

Define the following strongly continuous semigroup of mappings that describe the
time evolution of problem (3.1), (3.2):

(Sλt v)(x) = eλtv(xe−t), 0 ≤ x <∞. (3.4)
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We have the following theorem

Theorem 3.1 ([8]). If λ < 1, then for each v ∈ V1 we have

lim
t→∞

‖Stv‖V1 = 0

and the unique measure invariant under {St}, t ≥ 0, is concentrated on the fixed
point v ≡ 0. If λ ≥ 2, the semi-dynamical system {St}, t ≥ 0, admits a strictly turbu-
lent trajectory and, consequently, there exists for {St}, t ≥ 0, a nontrivial invariant
measure.

Further, we define the infinitesimal operator for the semigroup {St}, t ≥ 0, as

Au = λu− x∂u
∂x

(3.5)

with the domain
D(A) = {v ∈ C1([0, 1],R) : v(0) = 0}.

Definition 3.2. We say that the strongly continuous semigroup {St}, t ≥ 0, is of
contraction type if there exists a constant M ∈ R+ such that for every t ≥ 0:

‖St‖V1 ≤ eMt.

Now, we shall show

Proposition 3.3. The semigroup {St}, t ≥ 0, is a strongly continuous semigroup of
contraction type on the space L2 = L2([0, 1],R).

Proof. We have

‖Stv‖2L2 =

1∫
0

|Stv(x)|2dx =

1∫
0

e2λt|v(xe−t)|2dx =

=
{
z = xe−t, x = zet

dx = etdz

}
=

e−t∫
0

e2λt|v(z)|2etdz ≤

≤ e(2λ+1)t‖v‖2L2 .

Therefore,
‖St‖L2 ≤ e(λ+ 1

2 )t

so {St}, t ≥ 0, is the semigroup of contraction type for M = λ+ 1
2 , which completes

the proof.

4. STOCHASTIC EVOLUTION EQUATIONS

Consider the following stochastic evolution equation on the Hilbert space H:

du(t) = Au(t)dt+B(u(t))dw(t),
u(0) = u0.

(4.1)
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The equation admits additionally the perturbances by the exterior random events.
It is such because the Lasota equation describes the dynamics of the population,
approximately only. The error of the approximation is defined in the stochastic term
that is given by an operator acting on the Wiener process.

LetH andH1 be real separable Hilbert spaces with the norms ‖·‖H and ‖ · ‖H1 and
the scalar products 〈·, ·〉H and 〈·, ·〉H1 , respectively. Let (Ω,F , (F)t∈[0,T ], P ) be a fil-
tered probability space on which an increasing and right-continuous family (Ft)t∈[0.T ]

of complete sub-σ-algebras of F is defined. Let L(H,H1) denotes the space of bounded
operators from H to H1. Let L2(H,H1) denotes the space of Hilbert-Schmidt opera-
tors with the norm ‖ · ‖HS .

Consider an H-valued Wiener process w(t) with nuclear covariance operator Q ∈
L(H,H) = L(H).
It is known [2] that there are real-valued independent Wiener processes {wi(t)}∞i=0 on
[0, T ] such that

w(t) =
∞∑
i=0

wi(t)ei

almost surely with respect to ω ∈ Ω, where {ei}∞i=0 is the orthonormal basis of eigen-
vectors of Q, corresponding to eigenvalues {λi}∞i=0, where

∑∞
i=0 λi <∞, and

E[∆wi∆wj ] = (t− s)λiδij

for ∆wi = wi(t)− wj(t), s < t (δij is the Kronecker delta).
Introduce the n-th approximation of the Wiener process (w(t))t∈[0,T ]:

wn(t) =
∞∑
j=0

wnj (t)ej , (4.2)

where 0 = tn0 < . . . < tnn and for tni−1 < t ≤ tni we define

wnj (t) =
t− tni−1

tni − tni−1

wnj (tni ) +
tni − t

tni − tni−1

wj(tni−1).

Assume:

(A1) (u(t))t∈[0,T ] is an H1-valued stochastic process, A : D(A) ⊂ H1 → H1 is
the infinitesimal generator of a strongly continuous semigroup {S(t)}t∈[0,T ],
B : H1 → L(H,H1) is a nonlinear operator, {S(t)}t∈[0,T ] is a semigroup of
contraction type;

(A2) u0 ∈ D(A) is an initial random variable, square integrable, F0-measurable and
with values in H1;

(A3) there exist a constant K > 0 and a positive definite symmetric nuclear operator
R which commutes with S, such that P (R−1z0 ∈ H1) = 1 and the following
conditions are satisfied:
(i)

‖R−1B(h1)Q
1
2 ‖2HS + ‖R−1t̃r(QDB(h1)B(h1))‖2H1

≤ K(1 + ‖h1‖2H1
),
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(ii)
tr((B(h1)−B(h̃1))Q(B(h1)−B(h̃1))∗) ≤ K‖h1 − h̃1‖2H1

for h1, h̃1 ∈ H1, where “∗” denotes the adjoint operator,
(A4) the operator B ∈ C1

b , i.e. is of class C1 with bounded derivative, and this
derivative is globally Lipschitzian;

(A5) the operator DB(h1)A : D(A) ⊂ H1 → L(H,H1) can be uniquely extended to a
bounded operator from H1 to L(H,H1), that is, there exists a positive constant
k such that for h1 ∈ H1 we get

‖DB(h1)Ah1‖L(H,H1) ≤ k‖h1‖H1 .

Apart from (4.1) we consider the equation

dû(t) = Aû(t)dt+B(û(t))dw(t) +
1
2

t̃r(QDB(û(t))B(û(t)))dt,

û(0) = u0,
(4.3)

where 1
2 t̃r(QDB(û(t))B(û(t))) is the so-called correction term implying from

the approximation theorem of Wong-Zakai type. It is defined in papers of
K. Twardowska [14,15].

We recall the definition of t̃r from [14, 15]. First observe that the Fréchet
derivative DB(h1) ∈ L(H1, L(H,H1) for h1 ∈ H1 and we consider the com-
position DB(h1)B(h1) ∈ L(H,L(H,H1)). We view the Fréchet derivative of
B(h1) as DB(h1, h2) since h2 → DB(h1, h2), h2 ∈ H1, is linear and belongs to
L(H1, L(H,H1)). Let Ψ ∈ L(H,L(H,H1)) and define

Beh1
(h, h′) = (Ψ(h)(h′), h̃1)H1 ∈ R

for h, h′ ∈ H. From the Riesz theorem for the form Ψ on H we conclude that for
every h̃1 ∈ H1 there exists an operator Ψ̃(h̃1) ∈ L(H) such that for every h, h′ ∈ H

Beh1
(h, h′) = (Ψ̃(h̃1)(h), h′)H = (Ψ(h)(h′), h̃1)H1 .

Now, the covariance operator Q has finite trace and therefore the mapping

ξ̃ : h̃1 ∈ H1 → tr(QΨ̃(h̃1)) ∈ R

is a linear bounded functional on H1. Therefore, using the Riesz theorem we find a
unique ˜̃h1 ∈ H1 such that ξ̃(h̃1) = (˜̃h1, h̃1)H1 . Define

˜̃
h1 = t̃r(QΨ).

We observe that (˜̃h1, h̃1)H1 is the trace of the operator QΨ̃(h̃1) ∈ L(H) but t̃r(QΨ)

is merely a symbol for ˜̃h1.
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Definition 4.1. We say that the process (u(t))t∈[0,T ] is a mild solution to equation
(4.1) if:

(i) (u(t))t∈[0,T ] is a progressively measurable process,
(ii) B(u(·)) ∈ ΛT (w,H,H1), where

ΛT (w,H,H1) =
{

Ψ : [0, T ]× Ω→ L(H,H1),

Ψ is a progressively measurable process,

E
[ T∫

0

‖ΨQ 1
2 ‖2HSds

]
= ‖Ψ‖2Λt

=

=
∞∑
i=0

E
[ T∫

0

‖Ψ(s, ω)ei‖2H1
ds
]
<∞

}
,

(4.4)

(iii) for every t ∈ [0, T ] there exists Ωt, P (Ωt) = 1, such that equation (4.1) is
satisfied for every ω ∈ Ωt.

Consider the following sequence of approximation equations

dun(t) = Aun(t)dt+B(un(t))dwn(t),
un(0) = u0,

(4.5)

where (wn(t))t∈[0,T ] is the approximation sequence of the Wiener processes given by
equation (4.2).

It is known from the theory of stochastic differential equations that there exists
exactly one solutions to systems (4.1), (4.3) and (4.5), respectively.

We have the following

Theorem 4.2 ([15]). Assume that (wn(t))t∈[0,T ] is the n-th approximation of the
Wiener process (w(t))t∈[0,T ], given by (4.2). Let (un(t))t∈[0,T ] be the solutions of the
sequence of approximation equations (4.5) and û(t) be the solution to equation (4.3).
Suppose that assumptions (A1)–(A5) are satisfied and E[‖R−1u0‖2H1

] < ∞. Then,
for every T , 0 < T <∞ and for given ε > 0 we get

lim
n→∞

P
(

sup
0≤t≤T

‖un(t, ω)− û(t, ω)‖H1 ≥ ε
)

= 0. (4.6)

5. THE HAMMERSTEIN OPERATOR AS PERTURBATION

Now let us take H = H1 = L2([0, 1]) with an orthonormal basis {en}∞n=0 given by the
formula

en(s) = cosπns. (5.1)



On the approximation theorem of Wong-Zakai type for the Lasota operator 263

Let A be the infinitesimal generator of a semigroup for the Lasota operator. Define
the integral Hammerstein operator on H1 as the operator B : H1 → L(H,H1) of the
form:

B(h)(ei)(s) =

1∫
0

Ki(s, t)f(t, h(t))dt, (5.2)

where Ki(s, t) = Ki1(s)Ki2(t), Ki1,Ki2 ≥ 0 and Ki1(s) ∈ C4([0, 1]), Ki2(t) ∈
C([0, 1]), f ∈ C1([0, 1]× R). Moreover, we assume, that:

(H1) there exist a and b > 0, such that |f(t, x)| ≤ a(t) + b|x|
(H2) there existsM > 0, such that

|f(t, x)− f(t, y)| ≤ M|x− y|,

(H3) there exist K1, such that
1∫

0

Ki1(s)2ds ≤ K1

and
(H4) there exist K2, such that

max
t∈[0,1]

Ki2(t) ≤ K2

for each i = 1, . . ..

Define the operator R = (I − ∆)−1, ∆ = d2

dx2 . It is obvious that R is a positive
definite, symmetric and nuclear operator. Indeed, we have

Lemma 5.1. Let the operator A defined by (3.5) and let the operator B defined by
(5.2) satisfy conditions (H1)–(H4). Then the operators A and B satisfy conditions
(A1)–(A5).

We shall show then that the assumptions of Theorem 4.2 are satisfied. Therefore,
the approximation theorem of the Wong-Zakai type is valid for the problems with the
infinitesimal generator defined by the Lasota operator and with appropriate operator
B. Now, let us notice that for the bounded operatorM : H → K and nuclear operator
N : K → H, where H and K are two separable Hilbert spaces, we have

tr(MN) = tr(NM). (5.3)

This equality is obvious [7] (Ex. 5.8. p. 125).

Proof of Lemma 5.1. First, let us notice that

DBx0(h)(ei)(s) =

1∫
0

Ki(s, t)f ′x(t, x0(t))h(t)dt.

Assumptions (A1), (A2) and (A4) are satisfied by our definitions and by the assumed
properties of the operators [14].
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We shall verify assumption (A3) (i). First, we shall show that there exists a
constant K > 0 and a positive-definite symmetric nuclear operator R, that commutes
with S, such that P (R−1z0 ∈ H1) = 1 and

‖R−1t̃r(QDB(h1)B(h1))‖2H1
≤ K

(
1 + ‖h1‖2H1

)
, (5.4)

for h1 ∈ H1. From (5.1) it follows, that

d2

dt2
en = −n2π2en.

Indeed,

‖R−1t̃r(QDB(h1)B(h1))‖2H1
=
∞∑
n=0

|〈R−1t̃r(QDB(h1)B(h1)), en〉H1 |2 =

=
∞∑
n=0

∣∣∣〈t̃r(QDB(h1)B(h1)),
(

1− d2

dx2

)
en〉H1

∣∣∣2 =

= K̃

∞∑
n=0

|〈t̃r(QDB(h1)B(h1)), (1 + n2π2)en〉H1 |2 ≤

≤ K̃1

∞∑
n=0

[
|〈t̃r(QDB(h1)B(h1)), en〉H1 |2+

+ n4|〈t̃r(QDB(h1)B(h1)), en〉H1 |2
]
.

Now we estimate

|〈t̃r(QDB(h1)B(h1)), en〉H1 |2 = λ2
n

∣∣∣∣∣∣
1∫

0

1∫
0

Ki(s, t)f ′x(t, B(h1)(ei)(t))h1(t)dtds

∣∣∣∣∣∣
2

because
〈ei, en〉 = 0 for i 6= n.

We have

|DB(h1)B(h1)(ei)(s)| =

∣∣∣∣∣∣
1∫

0

Ki1(s)

1∫
0

Ki2(t)f ′x(t, B(h1)(ei)(t))h1(t)dtds

∣∣∣∣∣∣ ≤
≤ λn

1∫
0

|Ki1(s)|ds
1∫

0

|Ki2(t)| [a(t) + b|B(h1)(ei)(t)|])|h1(t)|dt.

Now ∣∣∣∣∣∣
1∫

0

K1(s)(en)(s)ds

∣∣∣∣∣∣ ≤ K̃
1∫

0

K1(s)(en)(s)ds =

1∫
0

K(s)(en)(s)ds ≤

≤

 1∫
0

K2
1 (s)ds ·

1∫
0

|e2
n(s)|ds


1
2

.
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But we have
en(s) = cosπns

so
1∫

0

K1(s)(en)(s)ds =
1
πn

K1(s) sinπns
∣∣∣∣1
0

− 1
πn

1∫
0

K ′1(s) sinπnsds =

= − 1
πn

1∫
0

K ′1(s) sinπnsds =

=
1

π2n2
K ′1(s) cosπns

∣∣∣∣1
0

+
1

π2n2

1∫
0

K ′′1 (s) cosπnsds.

Further
1∫

0

K1(s) cosπnsds =
1
πn

1∫
0

K1(s)(sinπns)′ds =

=
1
πn

[K1(s) sinπns
∣∣∣∣1
0

−
1∫

0

K ′1(s) sinπnsds] =

=
1

π2n2

1∫
0

K ′1(s)(cosπns)′ds =

=
1

π2n2
[K1(s) cosπns

∣∣∣∣1
0

−
1∫

0

K
′′
1 (s) cosπnsds].

We have ∣∣∣∣
1∫

0

K1(s)en(s)ds
∣∣∣∣2 ≤ c

n4
.

Now we have

〈t̃r(QDB(h1)B(h1)), en〉H1 = DB(h1)B(h1)(en) =
∞∑
j=0

[DB(h1)B(h1)(ej)](λjej).

Moreover,

en(t) = e2πint,

− d2

dt2
en(t) = n2en,

− d2

dx2
(cos 2πnx) = n2(cos 2πnx).
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Now

|〈t̃r(QDB(h1)B(h1)), en〉H1 |2 = λ2
n|

1∫
0

Kn(s, t)f ′x(t, B(h1)(ei)(t))h1(t)dt|2 ≤

≤ cλ2
n‖h1‖2H1

≤ cK̃2

n4
‖h1‖2H1

under assumptions f ′x ≤ a(t) + b|x|, Kn is bounded by c independently of n, λn ≤
eK
n2 .

Further, we shall show that there exists a constant K > 0 and a positive-definite
symmetric nuclear operator R, that commutes with S, such that P (R−1z0 ∈ H1) = 1
and

‖R−1B(h1)Q
1
2 ‖2HS + ‖R−1t̃r(QDB(h1)B(h1))‖2H1

≤ K(1 + ‖h1‖2H1
), (5.5)

for h1 ∈ H1. Indeed, we have∑
n≥1

|R−1B(h1)Q
1
2 en|2 =

∑
n≥1

|R−1B(h1)λ
1
2 en|2 =

=
∑
n≥1

λn‖R−1B(h1)en‖2 ≤
∑
n≥1

λnK̃(1 + ‖h1‖2).

We have

R−1B(h1)en = (I −∆)

1∫
0

K1(s, t)f(t, h1(t))dt =

=

[ 1∫
0

K1(s, t)f(t, h1)dt−
1∫

0

K ′′1 (s, t)f(t, h1(t))dt

]
=

=

1∫
0

L(s, t)f(t, h1(t))dt.

Moreover,

‖R−1B(h1)en‖2 =

1∫
0

[ 1∫
0

L(s, t)f(t, h1(t))dt

]2

ds ≤

≤
1∫

0

[ 1∫
0

L(s, t)2dt

]
·

[ 1∫
0

f(t, h1(t))2dt

]
ds ≤

≤
1∫

0

[ 1∫
0

L(s, t)2dt

]
·

[ 1∫
0

(
a(t) + b|h1(t)|2

)
dt

]
ds ≤

≤ K̂(1 + ‖h1‖2)

1∫
0

1∫
0

L(s, t)2dtds.
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From (5.4) and (5.5) we get (A3) (i).
Now we shall verify (A3) (ii).
From (5.3) it follows, that the condition (A3) (ii) is equivalent to

tr(Q(B(h1)−B(h̃1))∗(B(h1)−B(h̃1))) ≤ K‖h1 − h̃1‖2H1
.

Notice, that

tr(Q(B(h1)−B(h̃1))∗(B(h1)−B(h̃1))) ≤

≤

( ∞∑
n=1

λn

)
‖(B(h1)−B(h̃1))∗(B(h1)−B(h̃1))‖ ≤

≤

( ∞∑
n=1

λn

)
‖B(h1)−B(h̃1)‖2.

Moreover

|B(h1)(ei)(s)−B(h̃1)(ei)(s)| =

∣∣∣∣∣∣
1∫

0

Ki(s, t)
(
f(t, h1(t))− f(t, h̃1(t))

)
dt

∣∣∣∣∣∣ ≤
≤

1∫
0

|Ki(s, t)|M|h1(t)− h̃1(t)|dt,

whereM is defined by (H2). From the Schwarz inequality it follows, that

‖B(h1)(ei)−B(h̃1)(ei)‖2 ≤

 1∫
0

K2
i1(s)ds

 1∫
0

(
Ki2(t)

(
h1(t)− h̃1(t)

))2

dt

 ≤
≤ K1K2‖h1 − h̃1‖2.

Hence

‖(B(h1)−B(h̃1))(x)‖2 =
∞∑
n=1

〈x, en〉2‖(B(h1)−B(h̃1))(en)‖2 ≤

≤
∞∑
n=1

〈x, en〉2K1K2‖h1 − h̃1‖2 = K1K2‖h1 − h̃1‖2‖x‖2.

Hence
‖(B(h1)−B(h̃1))‖2 ≤ K1K2‖h1 − h̃1‖2

and finally

tr(Q(B(h1)−B(h̃1))∗(B(h1)−B(h̃1))) ≤

( ∞∑
n=1

λn

)
K1K2‖h1 − h̃1‖2.
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The last inequality guarantees, that the operator B satisfies condition (A3) (ii).
Now we shall verify assumption (A5). We have from the definition of the operator A:

DB(h1)Ah1(ei)(s) = λ

1∫
0

Ki(s, t)f ′x(t, h1(t))h1(t)dt−
1∫

0

Ki(s, t)f ′x(t, h1(t))th′1(t)dt

= I1 − I2.
(5.6)

We estimate I2. We get by integrating by parts:

I2 =

1∫
0

[Ki(s, t)f ′x(t, h1(t))t]h′1(t)dt =

= Ki(s, 1)f ′x(1, h1(1))1h1(1)−Ki(s, 0)f ′x(0, h1(0))0h1(0)−

−
1∫

0

[Ki(s, t)f ′x(t, h1(t))t]′th1(t)dt =

= Ki(s, 1)f ′x(1, h1(1))h1(1)−
1∫

0

K ′it(s, t)f
′
x(t, h1(t))th1(t)dt−

−
1∫

0

Ki(s, t)f ′′xt(t, h1(t))th1(t)dt−
1∫

0

Ki(s, t)f ′′xx(t, h1(t))h′1(t)th1(t)dt−

−
1∫

0

Ki(s, t)f ′x(t, h1(t))th1(t)dt.

We write

I2 = I21 − I22 − I23 − I24 − I25 = I21 − I22 − I23 − αI2 − I25.

The last equation may be written in the form

(1 + α)I2 = I21 − I22 − I23 − I25.

We see that under a suitable definition of the function f(t, x), for example, to get
f ′x(t, h1(t)) = αf ′′xx(t, h1(t))h′1(t), α ≥ 0, we have the situation that we can add the
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expressions I2 and I24. Then the derivatives h′1(t) disappear. Thus we obtain

DB(h1)Ah1(ei)(s) = λ

1∫
0

Ki(s, t)f ′x(t, h1(t))h1(t)dt−

− (1− α)

1∫
0

Ki(s, t)f ′x(t, h1(t))th′1(t)dt =

= λ

1∫
0

Ki(s, t)f ′x(t, h1(t))h1(t)dt−
1∫

0

Ki(s, t)f ′x(t, h1(t))th′1(t)dt−

−Ki(s, 1)f ′x(1, h1(1))h1(1) +

1∫
0

K ′it(s, t)f
′
x(t, h1(t))th1(t)dt+

+

1∫
0

Ki(s, t)f ′′xt(t, h1(t))th1(t)dt+

1∫
0

Ki(s, t)f ′x(t, h1(t))th1(t)dt,

and from this we get that ‖DB(h1)Ah1‖L(H,H1) ≤ k‖h1‖H1 .

We have proved

Theorem 5.2. Assume that (wn(t))t∈[0,T ] is the n-th approximation of the Wiener
process (w(t))t∈[0,T ], given by (4.2). Let (un(t))t∈[0,T ] be the solutions of the sequence
of approximation equations (4.5) and û(t) be the solution to equation (4.3) with the
operator A given by (3.5) and the operator B given by (5.2). Suppose that assumptions
(H1)–(H4) are satisfied and E[‖R−1u0‖2H1

<∞. Then, for every T , 0 < T <∞ and
for given ε > 0 we get (4.6).
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