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Abstract. In this paper we discuss all normal extensions of a minimal operator generated
by a linear multipoint differential-operator expression of first order in the Hilbert space of
vector-functions on the finite interval in terms of boundary and interior point values. Later
on, we investigate the structure of the spectrum, its discreteness and the asymptotic behavior
of the eigenvalues at infinity for these extensions.
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1. INTRODUCTION

A densely defined closed operator N in a Hilbert space H is called formally normal
if D(N) C D(N*) and ||[Nf|l,, = [[N*f|l, for all f € D(N). If a formally normal
operator has no formally normal non-trivial extension, then it is called a maximal
formally normal operator. If a formally normal operator IV satisfies the condition
D (N) = D (N*), then it is called a normal operator ([1]). The densely defined closed
operator N is normal if and ounly if NN* = N*N ([2]).

The first results in the area of normal extension of unbounded formally normal
operators on a Hilbert space are due to Y. Kilpi ([3-5]) and R. H. Davis ([6]), fur-
thermore E.A. Coddington ([1]), G. Biriuk and E.A. Coddington ([7]), J. Stochel and
F.H. Szafraniec ([8-10]) established and developed it as a general theory. However,
application of this theory to the theory of differential operators in a Hilbert space has
not received the attention it deserves ([11-15]).

Fundamental results for the theory of two point ordinary differential operators has
been studied by many authors (for example, see [16-17]).
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The different characterization (calculus of adjoint operator, selfadjointness, lack of
selfadjointness, differentiable properties, normally solvable and invertible properties
etc.) of so-called multipoint ordinary differential operators has been investigated in
many works (for example, see [18-26]).

In this paper H and L? = L? (H, (a,b)), —00 < a < b < +00, denote a separable
Hilbert space of vector-functions from the interval [a, b] into H with the inner product
(norm) (-,-) (|I]l) and (-,-);2 (||l .2), respectively. Moreover, let E be an identical
operator in H.

2. THE MINIMAL AND MAXIMAL OPERATORS

Let [a,b], —0o < a < b < 400, be an interval which is subdivided into n subintervals
by points cg, c1,¢2, ..., ¢, such that a = ¢y < c¢; < co < ... <c¢p_1 < ¢, =b. Assume
that

A(t) = A, t€ A = (ck_l,ck), k=1,2,...,n

is a linear self-adjoint operator in H for every k = 1,2,...,n and operator Ay is a
positive defined operator (for simplicity we assume that Ax > F) and does not depend
on t.

In this work we consider in the space L? a linear multipoint differential-operator
expression of first order of the following form

Lu) =1k (u), t € Ay, (2.1)
where
I (u) =o' (t) + Apu(t), t € Ay, ue Li =L (H,Ar), k=1,2,...,n.  (2.2)

The differential expression [j is defined on all vector-valued functions absolutely
continuous on Ay and u' € LZ. It is clear that the formally adjoint expression to
(2.2) in the Hilbert space L? for k = 1,2, ...,n is of the form

I () = = (£) + A (1) (2.3)

Let us define an operator Léo on the dense set of all vector-functions D,éo in L7,

Dl = {u(t) €Ly u(t) =Y @k (t) fr, o (t) € CF° (Ax),
k=1

fkeD(Ak),k:1,2,...7m,meN}

as
L,/Cou =1 (u), k=1,2,...,n.

Since Ay > FE, k=1,2,...,n, then from the formula

Ck
Re (Ljgu,u)pz = / 14 %u (1) V2dt > 0, u €D},

Ck—1
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we infer that operator L,/CO is accretive in Lz for every k = 1,2,...,n. Hence the
operator L]/CO, k =1,2,...,n, has a closure in L7. The closure Zéo of Léo is called

the minimal operator generated by the differential-operator expression (2.2) and it is
denoted by Lyg. On the other hand, the direct sum

Lo = @ Lk()
k=1

of operators Lyg, k = 1,2,...,n, is called a minimal operator (multipoint) generated
by the differential-operator expression (2.1) in L2.
In a similar way the minimal operator Lg in L? for the formally adjoint expression
of (2.1)
) =1 (v), te Ay, k=1,2,...,n, (2.4)

can be constructed, that is,

n
+ . +
L{ =L
k=1

where Lﬁo, k =1,2,...,n, is a minimal operator which is generated by expression
(2.3) in L3.
The adjoint operator of L}, (Lko) in L2, k = 1,2,...,n is called the maximal

operator generated by (2.2) ((2.3)) and it is denoted by Ly, (L;), i.e.
Ly = (Lﬁo)*, L;r = (Lko)*, k=1,2,...,n.

Similarly, direct sums of these operators, that is,

L= éLk and LT := éL;
k=1 k=1

are called maximal operators (multipoint) for the differential-expression (2.1) and
(2.4), respectively. It is clear that Lo C L, L C L* (see [27,28]).
It is evident that the following theorem is valid.

Theorem 2.1. The domain D(Lgy) of the minimal operator Ly is the set of all func-
tions u absolutely continuous on each subinterval [ci—1,ck] of [a,b] such that

u(cg—1+) = u(cg—) =0,

u' + Apu € L*(H, Ay)

and

Lou(t) = Lrou(t), t € A, k=1,2,...,n.

Now we investigate the domain of the maximal operator L in L? (an operator
L = (L{)* exists, because the linear manifold D(LJ) is dense in L?).
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Theorem 2.2. The domain D(L) of the mazimal operator L is the set of all functions
u absolutely continuous on each subinterval [ci—1,ck] of [a,b] such that

u' + Agu € L*(H, Ay)

and
Lu(t) =u'(t) + Agu(t), t € A, k=1,2,...,n.

Proof. Note that the analogous theorem for the minimal operator LS’ in L? is valid.
On the other hand, it is easy to see that

n

L= (1) =@ ) =D

k=1

From this it follows that to prove the claim it is sufficient to describe the domains of
(L{y)* = Ly. Let u be any vector-function from D(L;,). Then for any v € D (Ly,)
we have

(u, Liv) 2 = (u, (L) V)i = (Lfgusv) g =
=(-u+ Aku,v)Li = (*U/aU)Li + (UvAkv)Li
From this relation we obtain
(v, U)Li = (u, (Agv — LW))Lﬁ i
Since u(ck) =0, k=0,1,...,n, integrating by parts

t

(u',v)Li = | u, % / (Agv — L) dzx =
Cho1 L2
t ok t
= | u, / (Apv — Lyv) dx — |, / (Apv — Lyv)dz | =
Cr—1 e Ch—1
t
= |, / (Lyv — Agv) dx
Ck—1
and from this
¢
u' v+ / (Agv — Lyv) dz =0,

Cr—1 .2
k
which holds for any u € D(L},). Hence for any k =1,2,...,n and t € (cx_1, k)
t

v (t) + / (Apv — Liv) dx = C (v) = constant

Ck—1
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is true. Then for ¢ € (¢x—1,ck), k =1,2,...,n, v is differentiable and we have

Lyv =" (t) + Apv (t) . O

3. THE NORMAL EXTENSIONS OF THE MINIMAL OPERATOR

The main purpose of this section is to describe all normal extensions of the minimal
operator Lg in L? in terms of the boundary and interior points values.
Let us note that analogous problem under the condition

b
/||A(t)||2dt < oo

for the operator-coefficients A (t), a <t <b, of a linear differential-operator expres-
sion of first order in L? has been established.
The condition

Ag (t) = %(A(t) + A*(t)) = Ar = constant a.e. in (a,b)

is necessary and sufficient for the existence of the normal extensions of the minimal
operator generated by this expression in L? (cf. [14]).

Here the main purpose is to generalize the obtained result in this theory (cf. [15])
to the family of unbounded operator-coefficients of the first-order multipoint linear
differential operators.

First, let us define a Hilbert space H; (T), — oo < j < +o0, constructed via
the operator T7. Let H = H, be a Hilbert space over the field of complex numbers
with inner product (-,-),, and norm || f|l,, = (f, f);{/oz, f € Ho. Let T be a linear
self-adjoint operator on the Hilbert space H such that [|Tf[[;,, > [[f[l,- The set

D (Tj), 0 < j < 400, under the inner product

(fa g)H+j = (ija Tjg)Hoa fag €D (T]) ;

is a Hilbert space. We define H4; = Hy; (T), 0 < j < 400, and it is called a positive
space.

In the similar way we define a Hilbert space, H_; = H_; (T), 0 < j < 400, and
it is called a negative space.

It is clear that Hi, C H4j, 0 < 7 < j < 400, Hy; C H = Ho C H_j,
Hi; =H-;,0<j<+ooand Hyj, 0<j < +oo, is dense in H (for more a detailed
analysis of the space H,;, —oo < j < o0, see [27,28]).

By W3 (H, (a,b)) we define the Sobolev space of all vector-functions defined on
the finite interval [a, b] with values in H ([28]).

The following result characterizes the normal extension of the minimal operator Ly.
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Theorem 3.1. Let Al/2 [D (L) N D (L)] € W3 (H,Ag) for every k =1,2,....n
If L is a normal extension of the minimal operator Ly in L2, then for every u € D(i),
the following relations

Z lu (ex=))1* = Z lu (k1 +)

ZHA}/% (x> = ZHA u (e )|

hold.

Proof. If L is any normal extension of the minimal operator Lo in L?, then from the
condition D(L) = D(L*) we have

(Euvu)L2 ::(uvji*u)Lzy u € l)(i)'

From this and conditions Ai/z [D(Lg)ND (L) € W3 (H,Ap), k=1,2,....n
we can write
n Ck
(Lu,u)pz — (u, L*u) 2 = (u',u) o + (u,u) 2 = Z (u,u)
k=1

Cr—1

=3 (lu(ex=)IP = llulex1+)*) =0, ue D(E).
k=1

On the other hand, from the second property of normality of the extension L we find

n Ck

|Lul|2s — || L*ul|?: = Z ((u Ak’u)Lz + (Agu,u’) ) Z u, Apu)
k=1 k=1

Ck—1
= 3 (14 (o) = 1AV 2 ) =
k=1
for every k=1,2,...,n. [
In general the following result is valid.

Theorem 3.2. A necessary and sufficient condition for the normality of the extension
L of the minimal operator Lq in L? is the normality of the extension Ly, of the minimal
operator Lo in L} for every k=1,2,...,n.

Proof. Let L = @ Ly be a normal extension of the minimal operator Ly = @ Lo
k=1 k=1
in L?. Then from D(L) = D(L*) we deduce that
D(L))® D(La) @ ...® D(Ly) ® ... ® D(Ly) =
=D(L})®D(Ly) @ ... D(Ly) @ ...® D(L;).
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From this we obtain

On the other hand, since
D(L10)®D(Lao)®...HD(Lk—1y0) ®D(Li) B D(Lk41)0) ®- - . & D(Lno) C D(L)

for every k = 1,2,...,n, then from the property || Lu| ;> = ||L*u| 2, u € D(L) of the
normality it is established that

|Leullzz = I Eullz,

for every u € D(]zk) and k =1,2,...,n. Hence the operator Lj, is a normal extension
of the minimal operator Lyg in Li, k=1,2,...,n.

Conversely, if the operators Ly, k = 1,2,...,n, are normal extensions of the
minimal operators Lxg in the space L% then the normality of the extension L :=
n o _ n
@@ Ly of the minimal operator Ly = @ Lyo in the space L? is clear. O
k=1 k=1

Now we can describe all normal extensions L of the minimal operator Lg in the
space L? in terms of boundary and interior points values.

Validity of the following main result of this section comes from Theorem 3.2 and
Theorem 2.1 in work [15].

Theorem 3.3. Let A}C/2 [D (L) N D (L)] € W3 (H,Ag) for every k =1,2,...,n.

Then each normal extension L of the minimal operator Lg in the space L? is generated
by the differential-operator expression (2.1) with the conditions

u (=) = Wiu (ep—1+) , (3.1)

where Wi, is a unitary operator in H and A,;lVVk = WkAgl for every k =1,2,... n.
The unitary operators Wi, Wa, ..., W, in'H are determined uniquely by the extension,
je. L = Ly, where W = @Z:l Wi. Moreover, the restriction of the maximal
operator L to the linear manifold of vector-functions w € D (L) N D (L™) that satisfy
conditions (3.1) for some unitary operators Wy, Wa, ..., W, with the corresponding
properties in H, is a normal extension of the minimal operator Lo in the space L.

Proof. Let L = EBZZI Ly be a normal extension of the minimal operator Ly =
@i _, Lro in the space L?. Then by Theorem 3.2 the extension Lj is a normal
extension of the minimal operator Ly in the space L? for every k =1,2,...,n. On
the other hand, by Theorem 2.1 of [15] for each k = 1,2, ..., n the normal extension Ly
of the minimal operator L in the space L% is generated by the differential-operator
expression (2.1) and boundary condition

u(cx—) = Wiu(cp—1+),

where Wy, is a unitary operator in H and A,ZIW;c = WkAgl. In addition, the unitary
operator W, is uniquely determined by the extension Ly, i.e Ly = L, , for every k =
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1,2,...,n. Consequently, the unitary operators Wi, Wa,..., W, in ‘H are uniquely
generated by the extension L~, i.e. L = Ly, where W = @Zzl Wig.

On the contrary, now let Ly be an extension generated by the differential-operator
expression (2.1) with the boundary condition (3.1) in L?,k = 1,2,...,n. In this case

by Theorem 2.1 of [15] for every k = 1,2,...,n the extension Lj is normal in L%.
From this result and Theorem 3.2 we infer that the extension L = @) _, Ly is a
normal operator in the space L2. O

Corollary 3.4. Let Ai/2 [D(Ly) N D (L})] € W3 (H,Ag) for every k =1,2,...,n.

Then every normal extension L of the minimal operator Lo in the space L? is accretive.

Proof. Indeed, from the validity of relation

n

2Re (Lu,uyre = 3 (llu(en=) I = Ju(epaH)IP) +2 3 / 1AL 2 (1)]2dt > o,

k=1 k=1x,

which is true for all w € D(L), and Theorem 3.1 we deduce that every normal extension
L is accretive. O

4. STRUCTURE AND DISCRETENESS OF THE SPECTRUM OF THE
NORMAL EXTENSIONS

In this section we will study the structure and discreteness of the spectrum of the
normal extensions of the minimal operator Ly in L2.

Let Cp, (H), 1 < p < oo, denote the Schatten-von Neumann class of all linear
operators in the Hilbert space H (see [17]). We set

hi :==cp — k-1, T := Wiexp(—Aghy), k=1,2,...,n.
Theorem 4.1. The spectrum of the normal extension L = &b Ly, has the form
k=1

n

o(L) = U a(Ly),

k=1

where

- 2p7i
o(Lg) = {)\ eC: A=X+ %, where g belongs to the set of solutions

of the equation e " — =0 on \, p € o (Ty), pEZ}, k=1,2,...,n.

Proof. Let us consider a problem for the spectrum for the normal extension L, that is,

Lu=Lwu=M+f MeC,felL?
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with the conditions
u(cg—) = Wiu (cg—1+),

where Wy, is a unitary operator in ‘H and
AW = WAL, kE=1,2,...,n.

It is clear that a general solution of the considered differential-operator equation has
the form
t
uy (t) =exp (= (Ag — AE) (t — ck—1)) fr + / exp (— (A — AE) (t — s)) f (s) ds,

Ck—1
where fr € H_1/5(Ay), t € A, k=1,2,...,n. From this and boundary condition
in interval Ag, k=1,2,...,n it follows

Ck
(Wi = exp (~(A = Y ) fi = [ exp (~(As = AE) (e — 5)) £ (5) d.

Cr—1
Therefore, for A € C and k =1,2,...,n, we have
Ck
(e B —Ty) fir, = W / exp [—(Ar — AE) (¢ — 8) — A E] f () ds

Ck—1

A necessary and sufficient condition for A € (L) is

e M =0, pe€o(Th)

for some k =1,2,...,n. Therefore,
2pmi
A=X+—,p€EZ, k=1,2,...,n,
hy
where e~*" € g (T}). This completes the proof. O

The following theorem describes discreteness of the spectrum of the normal ex-
tension L of the minimal operator L.

Theorem 4.2. If A,Zl € Coo(H) for every k = 1,2,...,n, L is a normal extension

of minimal operator Lo and X € p(L), then R\(L) € Coo(L?), where R\(L) is the
resolvent of the operator L.

Proof. First of all let us prove that if A,;l € Co (H), then L' e Cy (LQ). Let

~ n ~
L = @ Li, and consider the operators
k=1

Liu = + Agu, u € Li
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with boundary conditions
u(cp—) = Wiu(cp—1+), k=1,2,...,n.
It is known that the general solution of the equation Lyu = f, f € L3 is of the form

t

u(t) =exp(~Au(t— ) ot [ e (-An(ts) f (5)ds

Ck—1

t€ Ap, fr € Hoqy2(Ax), k=1,2,...,n. In this case from the boundary condition
we have

(B~ T0) fi = Wy (A/ exp (— Ay (ck — 5)) f (5) ds

Since ||Tx|| < 1, then from the last relation we have

fo = (E—T) Wy / exp (— Ay (cq — 8)) f (5) ds

A

Therefore,

LUf(t) = exp (= Ay (t— cpmn)) (B —Toy) ' Wy /eXp (—Ag (ck — ) f(s)ds | +
VAVA

+ / exp (A (t—s)) f(s)ds, fE L2, k=1,2,...,n.

Ck—1
From this and Theorem 3.4 of [15] it can be proved that

Li'eCx(L}), k=1,2,....,n.

Furthermore note that since L~! = kG} L', then L' € Co (L?). Now let A € p(L).
=1

Then from the equality ) ) o
Ry(L) =L "+ AR\(L)L !

it follows that Ry (L) € C (L?). O

Moreover, using the method established in Theorem 4.2, the following result is
true in the general case.
Theorem 4.3. If A;l € Cp(H), 1 <p < oo k=12...,n, L is a normal
extension of the minimal operator Lo and X € p(L), then R\(L) € C,(L?).
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Furthermore, from the representation of the resolvent Ry(L), A\ € p(L) of the
normal extension it can be easily verified that the following result is true. It can be
proved like in [15].

Theorem 4.4. Let Ly and Ly be two normal extensions of the minimal opera-
tor Lo with unitary operators W := @y_, Wi, U := @)_, Ux. Then for Ry (Lw) —
Ry (Ly) € Cy (L?), 1 <p <oo, A€ p(Lw)Np(Ly) if and only if

Wi,—U,eCp(H), 1<p<oo0,k=12,...,n

Proof. In this case, we easily see that

n

Ra(Lw) — Ba(Lv) = D[R (Lw,) — Ra(Lu,)]
k=1

for A € p(Lw) N p(Ly). From this relation it is evident that
Ry\(Lw) — RA(Ly) € Cp(L?),1 <p< o0
if and only if
Rx(Lw,) — Ra(Lu,) € Cp(L3),
for every A € p(Lw)Np(Ly) and k = 1,2,...,n. But by Corollary 3.3 of [15] the last
relation is true if and only if

Wi, —UreCp(H), 1<p<oo, k=1,2,...,n. O

Now we prove a result concerning the structure of the spectrum of the normal
extension L = Ly, where W = @, _; Wy, in the case of the minimal operator Ly has
discrete spectrum.

Theorem 4.5. Let A' € o, (H) for every k = 1,2,...,n. If Ly is any normal
extension of the minimal operator Ly in L2, then the spectrum of Ly has the form

LW = U g LWk
k=1

where

o(Lw,) = {)\ eC:A=Xn (Ap) + 7(21) (arg A\, (Tx) + 2pm), m €N, p € Z} ,

k
for every k =1,2,... n. In the special case, for Dirichlet’s multipoint boundary value
problem (W, = E, k=1,2,...,n) arg A\, (Tx) =0, k=1,2,...,n, m €N,

n

Proof. By Theorem 4.1, o (Lw) = J o (Lw,) and
k=1

-1
o(Lw,) = {/\G(C:)\(ln|u|+iargu+2p7ri), wherequ(Tk),pEZ}.

I
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On the other hand, since A; ' € Cs (H), k = 1,2,...,n, then for every k = 1,2,...,n
there is T, = W} exp (—Arhi) € Co (H) (see also Theorem 4.2).

Now let pp € 0, (T), k=1,2,...,n, be an eigenvalue of the operator T, with any
eigenvector x (1) € H, i.e. forany k=1,2,...,n

Wi exp (= Aghy) (1) = pa (p) -

In this case i € C is an eigenvalue number of the adjoint operator to W;* exp (—Aghi),
that is, of the operator exp (—Aghy) Wy, with the same eigenvector x (1) in H. Then
the last relation implies that
exp (—Aghi) We W exp (—Aghg) @ (1) = p (W exp (—Aghy)) -
- (exp (= Arhi) Wi (1)) = 1 (W exp (= Aghy)) - (W exp (—Arhi))z (1)

and from this we obtain

exp (—2Axh) @ (1) = |1 (W), exp (— Aghi))|* @ (1) -

Hence
| (W exp (—Arhg))| = exp (= (Ax) hi)

and from this relation we have
Injp| = (=he) AN(Ar), k=1,2,...,n.

Thus

J(ka)={Ae<C:>\:)\m(Ak)+ (h:)

(arg A, (T) +2pm), meN, pe Z}

for every k=1,2,...,n. O

5. ASYMPTOTICAL BEHAVIOR OF THE EIGENVALUES
OF THE NORMAL EXTENSIONS

In this section we investigate the asymptotic behavior at infinity of eigenvalues of the
normal extensions (having discrete spectrum) of the minimal operator Ly in L2,

We now state the following result for the special case which can be easily proved
by Theorem 4.5.

Theorem 5.1. If dim’H < +oo, then every normal extension Ly of the minimal
operator Lo in L? has a discrete spectrum and its eigenvalues at the infinity have the
following asymptotics:

[An (Lw)| ~ dn, 0 < § < 400, as n — 400.

Now we can prove the main result of this section.
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Theorem 5.2. If for each k =1,2,...,n, A,;l € Cx (H) and
A7rL (Ak) ~ ﬂkmaka 0< ﬁkaak < 400, as m — o0,

then the eigenvalues of any normal extension Ly of the minimal operator Ly in L?
have the following asymptotics:

Ag (Lw)| ~vqT%, 0 < v,a < +00, @ = max ay, asq — oo.
1<k<n

Proof. Without loss of generality we can assume that for every k,57 = 1,2,...,n,
k # j, the condition o (Ax) No (A;) = 0 is satisfied.
We set

N(A):= > 1, XeC,
IA(S)I<IA|

that is, the number of eigenvalues of a linear closed operator S in a Hilbert space
which modules do not exceed |A|, A € C. This function takes values in the set
of non-negative integer numbers and, in the case of an unbounded operator S,

n
non-decreasing and tends to +o0o as |A| — +oo. Here let Ly = € Lw, be any
k=1
normal extension of the minimal operator Lg in L?,

Ni (\) := > 1, k=1,2,...,n
IA(L)| < [A]
AE O(LWk)

and

NA:= > 1, XeC

IA(Lw)[<[A]

Since 0 (Ax)No (Aj) =0 forall k,j =1,2,...,n, k # j, then from Theorem 4.5 it is
clear that

N(\) :zn:zvk (\), AeC.
k=1

By Theorem 4.5 for each A € 0 (Lw,), k=1,2,...,n, we have

1 1/2
ATl = [ (40 + g G 20m0? |
k

where 0, := arg \;, (Tx), k=1,2,...,n, m =1,2,.... Since 0 < §,,, < 27 for each
m € N, then for A € 0 (Lw, ), k=1,2,...,n from the last equality we have

2

9 4m* 4 1/2 9 4w
A (Ax) + 5z P S IALwy)| < | A5 (Ak) + W
3 3

2 1/2
@+Dﬂ ,
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E=1,2,...,n, m € N, p € Z. Therefore the eigenvalues A € o (Lw,), k =
1

,2,...,n, have the following asymptotical behavior:
47{'2 1/2
|>\(LWk)‘N ﬁl%mgak—’_ﬁpQ ’ k:1727"'7n7m€N7p€Z‘
k

An argument similar to that used in [15] (or in [28]) shows that for the eigenvalues of
Lw,, k=1,2,...,n, it can be found that the following asymptotic formula holds:

14ay
N (A) ~ i |A] T , 0 < < 400, as |A| — +o0.

Hence
n 1o 14o n 1tap  14o 1+a
N~ ST = (S ) o

k=1 k=1

where 0 < v, < 400, a := [Bax o, as |A\| = 4o0. From this relation it is easy to
SRSNn

see that

[Aq (Lw)| ~vg™=, 0<~v,a<+o00, as ¢ — +o0.
This completes the proof. O

Remark 5.1. In the case of n =1, i.e. A(t) = A, a <t < b, the analogous problem
has been investigated in [15].
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