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MULTIPOINT NORMAL DIFFERENTIAL OPERATORS
OF FIRST ORDER

Abstract. In this paper we discuss all normal extensions of a minimal operator generated
by a linear multipoint differential-operator expression of first order in the Hilbert space of
vector-functions on the finite interval in terms of boundary and interior point values. Later
on, we investigate the structure of the spectrum, its discreteness and the asymptotic behavior
of the eigenvalues at infinity for these extensions.
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1. INTRODUCTION

A densely defined closed operator N in a Hilbert space H is called formally normal
if D (N) ⊂ D (N∗) and ‖Nf‖H = ‖N∗f‖H for all f ∈ D (N). If a formally normal
operator has no formally normal non-trivial extension, then it is called a maximal
formally normal operator. If a formally normal operator N satisfies the condition
D (N) = D (N∗), then it is called a normal operator ([1]). The densely defined closed
operator N is normal if and only if NN∗ = N∗N ([2]).

The first results in the area of normal extension of unbounded formally normal
operators on a Hilbert space are due to Y. Kilpi ([3–5]) and R. H. Davis ([6]), fur-
thermore E.A. Coddington ([1]), G. Biriuk and E.A. Coddington ([7]), J. Stochel and
F.H. Szafraniec ([8–10]) established and developed it as a general theory. However,
application of this theory to the theory of differential operators in a Hilbert space has
not received the attention it deserves ([11–15]).

Fundamental results for the theory of two point ordinary differential operators has
been studied by many authors (for example, see [16-17]).
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The different characterization (calculus of adjoint operator, selfadjointness, lack of
selfadjointness, differentiable properties, normally solvable and invertible properties
etc.) of so-called multipoint ordinary differential operators has been investigated in
many works (for example, see [18-26]).

In this paper H and L2 = L2 (H, (a, b)) ,−∞ < a < b < +∞, denote a separable
Hilbert space of vector-functions from the interval [a, b] into H with the inner product
(norm) (·, ·) (‖·‖) and (·, ·)L2 (‖·‖L2), respectively. Moreover, let E be an identical
operator in H.

2. THE MINIMAL AND MAXIMAL OPERATORS

Let [a, b], −∞ < a < b < +∞, be an interval which is subdivided into n subintervals
by points c0, c1, c2, . . . , cn such that a = c0 < c1 < c2 < . . . < cn−1 < cn = b. Assume
that

A (t) := Ak, t ∈ ∆k = (ck−1, ck) , k = 1, 2, . . . , n

is a linear self-adjoint operator in H for every k = 1, 2, . . . , n and operator Ak is a
positive defined operator (for simplicity we assume that Ak ≥ E) and does not depend
on t.

In this work we consider in the space L2 a linear multipoint differential-operator
expression of first order of the following form

l (u) := lk (u) , t ∈ ∆k, (2.1)

where

lk (u) := u′ (t) +Aku (t) , t ∈ ∆k, u ∈ L2
k := L2 (H,∆k) , k = 1, 2, . . . , n. (2.2)

The differential expression lk is defined on all vector-valued functions absolutely
continuous on 4k and u′ ∈ L2

k. It is clear that the formally adjoint expression to
(2.2) in the Hilbert space L2

k for k = 1, 2, ..., n is of the form

l+k (v) := −v′ (t) +Akv (t) . (2.3)

Let us define an operator L/k0 on the dense set of all vector-functions D/
k0 in L2

k,

D
/
k0 :=

{
u (t) ∈ L2

k : u (t) =
m∑
k=1

ϕk (t) fk, ϕk (t) ∈ C∞0 (∆k) ,

fk ∈ D (Ak) , k = 1, 2, . . . ,m, m ∈ N
}

as
L
/
k0u := lk (u) , k = 1, 2, . . . , n.

Since Ak ≥ E, k = 1, 2, . . . , n, then from the formula

Re (L/k0u, u)L2
k

=

ck∫
ck−1

‖A1/2
k u (t)‖1/2dt ≥ 0, u ∈D/

k0,
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we infer that operator L/k0 is accretive in L2
k for every k = 1, 2, . . . , n. Hence the

operator L/k0, k = 1, 2, . . . , n, has a closure in L2
k. The closure L

/

k0 of L/k0 is called
the minimal operator generated by the differential-operator expression (2.2) and it is
denoted by Lk0. On the other hand, the direct sum

L0 :=
n⊕
k=1

Lk0

of operators Lk0, k = 1, 2, . . . , n, is called a minimal operator (multipoint) generated
by the differential-operator expression (2.1) in L2.

In a similar way the minimal operator L+
0 in L2 for the formally adjoint expression

of (2.1)
l+ (v) = l+k (v) , t ∈ ∆k, k = 1, 2, . . . , n, (2.4)

can be constructed, that is,

L+
0 :=

n⊕
k=1

L+
k0,

where L+
k0, k = 1, 2, . . . , n, is a minimal operator which is generated by expression

(2.3) in L2
k.

The adjoint operator of L+
k0 (Lk0) in L2

k, k = 1, 2, . . . , n is called the maximal
operator generated by (2.2) ((2.3)) and it is denoted by Lk

(
L+
k

)
, i.e.

Lk = (L+
k0)∗, L+

k = (Lk0)∗, k = 1, 2, . . . , n.

Similarly, direct sums of these operators, that is,

L :=
n⊕
k=1

Lk and L+ :=
n⊕
k=1

L+
k

are called maximal operators (multipoint) for the differential-expression (2.1) and
(2.4), respectively. It is clear that L0 ⊂ L, L+

0 ⊂ L+ (see [27,28]).
It is evident that the following theorem is valid.

Theorem 2.1. The domain D(L0) of the minimal operator L0 is the set of all func-
tions u absolutely continuous on each subinterval [ck−1, ck] of [a, b] such that

u(ck−1+) = u(ck−) = 0,

u′ +Aku ∈ L2(H,∆k)

and
L0u(t) = Lk0u(t), t ∈ ∆k, k = 1, 2, . . . , n.

Now we investigate the domain of the maximal operator L in L2 (an operator
L = (L+

0 )∗ exists, because the linear manifold D(L+
0 ) is dense in L2).
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Theorem 2.2. The domain D(L) of the maximal operator L is the set of all functions
u absolutely continuous on each subinterval [ck−1, ck] of [a, b] such that

u′ +Aku ∈ L2(H,∆k)

and
Lu(t) = u′(t) +Aku(t), t ∈ ∆k, k = 1, 2, . . . , n.

Proof. Note that the analogous theorem for the minimal operator L+
0 in L2 is valid.

On the other hand, it is easy to see that

L =
(
L+

0

)∗
=

n⊕
k=1

(
L+
k0

)∗
=

n⊕
k=1

Lk.

From this it follows that to prove the claim it is sufficient to describe the domains of
(L+

k0)∗ = Lk. Let u be any vector-function from D(L+
k0). Then for any v ∈ D (Lk)

we have

(u, Lkv)L2
k

= (u, (L+
k0)∗v)L2

k
= (L+

k0u, v)L2
k

=

= (−u+Aku, v)L2
k

= (−u′, v)L2
k

+ (u,Akv)L2
k

From this relation we obtain

(u′, v)L2
k

= (u, (Akv − Lkv))L2
k
.

Since u(ck) = 0, k = 0, 1, . . . , n, integrating by parts

(u′, v)L2
k

=

u, d
dt

 t∫
ck−1

(Akv − Lkv) dx



L2
k

=

=

u, t∫
ck−1

(Akv − Lkv) dx


∣∣∣∣∣∣∣
ck

ck−1

−

u′, t∫
ck−1

(Akv − Lkv) dx

 =

=

u′, t∫
ck−1

(Lkv −Akv) dx


and from this u′, v +

t∫
ck−1

(Akv − Lkv) dx


L2
k

= 0,

which holds for any u ∈ D(L+
k0). Hence for any k = 1, 2, . . . , n and t ∈ (ck−1, ck)

v (t) +

t∫
ck−1

(Akv − Lkv) dx = C (v) = constant
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is true. Then for t ∈ (ck−1, ck), k = 1, 2, . . . , n, v is differentiable and we have

Lkv = v′ (t) +Akv (t) .

3. THE NORMAL EXTENSIONS OF THE MINIMAL OPERATOR

The main purpose of this section is to describe all normal extensions of the minimal
operator L0 in L2 in terms of the boundary and interior points values.

Let us note that analogous problem under the condition

b∫
a

‖A (t)‖2 dt <∞

for the operator-coefficients A (t) , a ≤ t ≤ b, of a linear differential-operator expres-
sion of first order in L2 has been established.

The condition

AR (t) =
1
2

(A(t) +A∗(t)) = AR = constant a.e. in (a, b)

is necessary and sufficient for the existence of the normal extensions of the minimal
operator generated by this expression in L2 (cf. [14]).

Here the main purpose is to generalize the obtained result in this theory (cf. [15])
to the family of unbounded operator-coefficients of the first-order multipoint linear
differential operators.

First, let us define a Hilbert space Hj (T ) , − ∞ < j < +∞, constructed via
the operator T j . Let H = H0 be a Hilbert space over the field of complex numbers
with inner product (·, ·)H0

and norm ‖f‖H0
= (f, f)1/2

H0
, f ∈ H0. Let T be a linear

self-adjoint operator on the Hilbert space H such that ‖Tf‖H0
≥ ‖f‖H0

. The set
D
(
T j
)
, 0 < j < +∞, under the inner product

(f, g)H+j =
(
T jf, T jg

)
H0
, f, g ∈ D

(
T j
)
,

is a Hilbert space. We define H+j = H+j (T ), 0 < j < +∞, and it is called a positive
space.

In the similar way we define a Hilbert space, H−j = H−j (T ), 0 < j < +∞, and
it is called a negative space.

It is clear that H+τ ⊂ H+j , 0 < τ < j < +∞, H+j ⊂ H = H0 ⊂ H−j ,
H∗+j = H−j , 0 < j < +∞ and H+j , 0 < j < +∞, is dense in H (for more a detailed
analysis of the space Hj , −∞ < j <∞, see [27,28]).

By W 1
2 (H, (a, b)) we define the Sobolev space of all vector-functions defined on

the finite interval [a, b] with values in H ([28]).
The following result characterizes the normal extension of the minimal operator L0.
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Theorem 3.1. Let A1/2
k

[
D (Lk) ∩D

(
L+
k

)]
⊂ W 1

2 (H,∆k) for every k = 1, 2, . . . , n.
If L̃ is a normal extension of the minimal operator L0 in L2, then for every u ∈ D(L̃),
the following relations

n∑
k=1

‖u (ck−)‖2 =
n∑
k=1

‖u (ck−1+)‖2,

n∑
k=1

‖A1/2
k u (ck−)‖2 =

n∑
k=1

‖A1/2
k u (ck−1+)‖2

hold.

Proof. If L̃ is any normal extension of the minimal operator L0 in L2, then from the
condition D(L̃) = D(L̃∗) we have

(L̃u, u)L2 = (u, L̃∗u)L2 , u ∈ D(L̃).

From this and conditions A1/2
k

[
D (Lk) ∩D

(
L+
k

)]
⊂ W 1

2 (H,∆k), k = 1, 2, . . . , n
we can write

(L̃u, u)L2 − (u, L̃∗u)L2 = (u′, u)L2 + (u, u′)L2 =
n∑
k=1

(u, u)

∣∣∣∣∣
ck

ck−1

=

=
n∑
k=1

(
‖u (ck−)‖2 − ‖u (ck−1+)‖2

)
= 0, u ∈ D(L̃).

On the other hand, from the second property of normality of the extension L̃ we find

‖L̃u‖2L2 − ‖L̃∗u‖2L2 =
n∑
k=1

(
(u′, Aku)L2

k
+ (Aku, u′)L2

k

)
=

n∑
k=1

(u,Aku)

∣∣∣∣∣
ck

ck−1

=

=
n∑
k=1

(
‖A1/2

k u (ck−)‖2 − ‖A1/2
k u (ck−1+)‖2

)
= 0

for every k = 1, 2, . . . , n.

In general the following result is valid.

Theorem 3.2. A necessary and sufficient condition for the normality of the extension
L̃ of the minimal operator L0 in L2 is the normality of the extension L̃k of the minimal
operator Lk0 in L2

k for every k = 1, 2, . . . , n.

Proof. Let L̃ =
n⊕
k=1

L̃k be a normal extension of the minimal operator L0 =
n⊕
k=1

Lk0

in L2. Then from D(L̃) = D(L̃∗) we deduce that

D(L̃1)⊕D(L̃2)⊕ . . .⊕D(L̃k)⊕ . . .⊕D(L̃n) =

= D(L̃∗1)⊕D(L̃∗2)⊕ . . .⊕D(L̃∗k)⊕ . . .⊕D(L̃∗n).
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From this we obtain
D(L̃k) = D(L̃∗k), k = 1, 2, . . . , n.

On the other hand, since

D(L10)⊕D(L20)⊕ . . .⊕D(L(k−1)0)⊕D(L̃k)⊕D(L(k+1)0)⊕ . . .⊕D(Ln0) ⊂ D(L̃)

for every k = 1, 2, . . . , n, then from the property ‖L̃u‖L2 = ‖L̃∗u‖L2 , u ∈ D(L̃) of the
normality it is established that

‖L̃ku‖L2
k

= ‖L̃∗ku‖L2
k
,

for every u ∈ D(L̃k) and k = 1, 2, . . . , n. Hence the operator L̃k is a normal extension
of the minimal operator Lk0 in L2

k, k = 1, 2, . . . , n.
Conversely, if the operators L̃k, k = 1, 2, . . . , n, are normal extensions of the

minimal operators Lk0 in the space L2
k, then the normality of the extension L̃ :=

n⊕
k=1

L̃k of the minimal operator L0 =
n⊕
k=1

Lk0 in the space L2 is clear.

Now we can describe all normal extensions L̃ of the minimal operator L0 in the
space L2 in terms of boundary and interior points values.

Validity of the following main result of this section comes from Theorem 3.2 and
Theorem 2.1 in work [15].

Theorem 3.3. Let A1/2
k

[
D (Lk) ∩D

(
L+
k

)]
⊂ W 1

2 (H,∆k) for every k = 1, 2, . . . , n.
Then each normal extension L̃ of the minimal operator L0 in the space L2 is generated
by the differential-operator expression (2.1) with the conditions

u (ck−) = Wku (ck−1+) , (3.1)

where Wk is a unitary operator in H and A−1
k Wk = WkA

−1
k for every k = 1, 2, . . . , n.

The unitary operators W1,W2, . . . ,Wn in H are determined uniquely by the extension,
i.e. L̃ = LW , where W =

⊕n
k=1Wk. Moreover, the restriction of the maximal

operator L to the linear manifold of vector-functions u ∈ D (L) ∩D (L+) that satisfy
conditions (3.1) for some unitary operators W1,W2, . . . ,Wn with the corresponding
properties in H, is a normal extension of the minimal operator L0 in the space L2.

Proof. Let L̃ =
⊕n

k=1 L̃k be a normal extension of the minimal operator L0 =⊕n
k=1 Lk0 in the space L2. Then by Theorem 3.2 the extension L̃k is a normal

extension of the minimal operator Lk0 in the space L2
k for every k = 1, 2, . . . , n. On

the other hand, by Theorem 2.1 of [15] for each k = 1, 2, . . . , n the normal extension L̃k
of the minimal operator Lk0 in the space L2

k is generated by the differential-operator
expression (2.1) and boundary condition

u(ck−) = Wku(ck−1+),

where Wk is a unitary operator in H and A−1
k Wk = WkA

−1
k . In addition, the unitary

operator Wk is uniquely determined by the extension L̃k, i.e L̃k = LWk
, for every k =
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1, 2, . . . , n. Consequently, the unitary operators W1,W2, . . . ,Wn in H are uniquely
generated by the extension L̃, i.e. L̃ = LW , where W =

⊕n
k=1Wk.

On the contrary, now let L̃k be an extension generated by the differential-operator
expression (2.1) with the boundary condition (3.1) in L2

k, k = 1, 2, . . . , n. In this case
by Theorem 2.1 of [15] for every k = 1, 2, . . . , n the extension L̃k is normal in L2

k.
From this result and Theorem 3.2 we infer that the extension L̃ =

⊕n
k=1 L̃k is a

normal operator in the space L2.

Corollary 3.4. Let A1/2
k

[
D (Lk) ∩D

(
L+
k

)]
⊂W 1

2 (H,∆k) for every k = 1, 2, . . . , n.
Then every normal extension L̃ of the minimal operator L0 in the space L2 is accretive.

Proof. Indeed, from the validity of relation

2Re (L̃u, u)L2 =
n∑
k=1

(
‖u (ck−)‖2 − ‖u (ck−1+)‖2

)
+ 2

n∑
k=1

∫
∆k

‖A1/2
k u (t)‖2dt ≥ 0,

which is true for all u ∈ D(L̃), and Theorem 3.1 we deduce that every normal extension
L̃ is accretive.

4. STRUCTURE AND DISCRETENESS OF THE SPECTRUM OF THE
NORMAL EXTENSIONS

In this section we will study the structure and discreteness of the spectrum of the
normal extensions of the minimal operator L0 in L2.

Let Cp (H) , 1 ≤ p ≤ ∞, denote the Schatten-von Neumann class of all linear
operators in the Hilbert space H (see [17]). We set

hk := ck − ck−1, Tk := W ∗k exp (−Akhk) , k = 1, 2, . . . , n.

Theorem 4.1. The spectrum of the normal extension L̃ =
n⊕
k=1

L̃k has the form

σ(L̃) =
n⋃
k=1

σ(L̃k),

where

σ(L̃k) =
{
λ ∈ C : λ = λ0 +

2pπi
hk

, where λ0 belongs to the set of solutions

of the equation e−λhk − µ = 0 on λ, µ ∈ σ (Tk) , p ∈ Z
}
, k = 1, 2, . . . , n.

Proof. Let us consider a problem for the spectrum for the normal extension L̃, that is,

L̃u = L̃ku = λu+ f, λ ∈ C, f ∈ L2
k



Multipoint normal differential operators of first order 407

with the conditions
u (ck−) = Wku (ck−1+) ,

where Wk is a unitary operator in H and

A−1
k Wk = WkA

−1
k , k = 1, 2, . . . , n.

It is clear that a general solution of the considered differential-operator equation has
the form

uλ (t) = exp (− (Ak − λE) (t− ck−1)) fk +

t∫
ck−1

exp (− (Ak − λE) (t− s)) f (s) ds,

where fk ∈ H−1/2 (Ak) , t ∈ ∆k, k = 1, 2, . . . , n. From this and boundary condition
in interval ∆k, k = 1, 2, . . . , n it follows

(Wk − exp (−(Ak − λE)hk)) fk =

ck∫
ck−1

exp (−(Ak − λE) (ck − s)) f (s) ds.

Therefore, for λ ∈ C and k = 1, 2, . . . , n, we have

(
e−λhkE − Tk

)
fk = W ∗k

 ck∫
ck−1

exp [−(Ak − λE) (ck − s)− λhkE] f (s) ds

 .

A necessary and sufficient condition for λ ∈ σ(L̃) is

e−λhk − µ = 0, µ ∈ σ (Tk)

for some k = 1, 2, . . . , n. Therefore,

λ = λ0 +
2pπi
hk

, p ∈ Z, k = 1, 2, . . . , n,

where e−λ0hk ∈ σ (Tk). This completes the proof.

The following theorem describes discreteness of the spectrum of the normal ex-
tension L̃ of the minimal operator L0.

Theorem 4.2. If A−1
k ∈ C∞(H) for every k = 1, 2, . . . , n, L̃ is a normal extension

of minimal operator L0 and λ ∈ ρ(L̃), then Rλ(L̃) ∈ C∞(L2), where Rλ(L̃) is the
resolvent of the operator L̃.

Proof. First of all let us prove that if A−1
k ∈ C∞ (H), then L̃−1 ∈ C∞

(
L2
)
. Let

L̃ =
n⊕
k=1

L̃k and consider the operators

L̃ku = u′ +Aku, u ∈ L2
k
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with boundary conditions

u (ck−) = Wku (ck−1+) , k = 1, 2, . . . , n.

It is known that the general solution of the equation L̃ku = f, f ∈ L2
k is of the form

u (t) = exp (−Ak (t− ck−1)) fk +

t∫
ck−1

exp (−Ak (t− s)) f (s) ds,

t ∈ ∆k, fk ∈ H−1/2 (Ak) , k = 1, 2, . . . , n. In this case from the boundary condition
we have

(E − Tk) fk = W ∗k

∫
∆k

exp (−Ak (ck − s)) f (s) ds

 .

Since ‖Tk‖ < 1, then from the last relation we have

fk = (E − Tk)−1
W ∗k

∫
∆k

exp (−Ak (ck − s)) f (s) ds

 .

Therefore,

L̃−1
k f (t) = exp (−Ak (t− ck−1)) (E − Tk)−1

W ∗k

∫
∆k

exp (−Ak (ck − s)) f (s) ds

+

+

t∫
ck−1

exp (−Ak (t− s)) f (s) ds, f ∈ L2
k, k = 1, 2, . . . , n.

From this and Theorem 3.4 of [15] it can be proved that

L̃−1
k ∈ C∞

(
L2
k

)
, k = 1, 2, . . . , n.

Furthermore note that since L̃−1 =
∞⊕
k=1

L̃−1
k , then L̃−1 ∈ C∞

(
L2
)
. Now let λ ∈ ρ(L̃).

Then from the equality
Rλ(L̃) = L̃−1 + λRλ(L̃)L̃−1

it follows that Rλ(L̃) ∈ C∞
(
L2
)
.

Moreover, using the method established in Theorem 4.2, the following result is
true in the general case.

Theorem 4.3. If A−1
k ∈ Cp(H), 1 ≤ p ≤ ∞, k = 1, 2, . . . , n, L̃ is a normal

extension of the minimal operator L0 and λ ∈ ρ(L̃), then Rλ(L̃) ∈ Cp(L2).
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Furthermore, from the representation of the resolvent Rλ(L̃), λ ∈ ρ(L̃) of the
normal extension it can be easily verified that the following result is true. It can be
proved like in [15].

Theorem 4.4. Let LW and LU be two normal extensions of the minimal opera-
tor L0 with unitary operators W :=

⊕n
k=1Wk, U :=

⊕n
k=1 Uk. Then for Rλ (LW )−

Rλ (LU ) ∈ Cp
(
L2
)
, 1 ≤ p ≤ ∞, λ ∈ ρ (LW ) ∩ ρ (LU ) if and only if

Wk − Uk ∈ Cp (H) , 1 ≤ p ≤ ∞, k = 1, 2, . . . , n.

Proof. In this case, we easily see that

Rλ(LW )−Rλ(LU ) =
n⊕
k=1

[Rλ(LWk
)−Rλ(LUk)]

for λ ∈ ρ(LW ) ∩ ρ(LU ). From this relation it is evident that

Rλ(LW )−Rλ(LU ) ∈ Cp(L2), 1 ≤ p ≤ ∞

if and only if
Rλ(LWk

)−Rλ(LUk) ∈ Cp(L2
k),

for every λ ∈ ρ(LW )∩ ρ(LU ) and k = 1, 2, . . . , n. But by Corollary 3.3 of [15] the last
relation is true if and only if

Wk − Uk ∈ Cp(H), 1 ≤ p ≤ ∞, k = 1, 2, . . . , n.

Now we prove a result concerning the structure of the spectrum of the normal
extension L̃ = LW , where W =

⊕n
k=1Wk, in the case of the minimal operator L0 has

discrete spectrum.

Theorem 4.5. Let A−1
k ∈ σp (H) for every k = 1, 2, . . . , n. If LW is any normal

extension of the minimal operator L0 in L2, then the spectrum of LW has the form

σ (LW ) =
n⋃
k=1

σ (LWk
),

where

σ (LWk
) =

{
λ ∈ C : λ = λm (Ak) +

(−i)
hk

(arg λm (Tk) + 2pπ) , m ∈ N, p ∈ Z
}
,

for every k = 1, 2, . . . , n. In the special case, for Dirichlet’s multipoint boundary value
problem (Wk = E, k = 1, 2, . . . , n) arg λm (Tk) = 0, k = 1, 2, . . . , n, m ∈ N.

Proof. By Theorem 4.1, σ (LW ) =
n⋃
k=1

σ (LWk
) and

σ (LWk
) =

{
λ ∈ C : λ =

−1
hk

(ln |µ|+ i argµ+ 2pπi) , where µ ∈ σ (Tk) , p ∈ Z
}
.
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On the other hand, since A−1
k ∈ C∞ (H), k = 1, 2, . . . , n, then for every k = 1, 2, . . . , n

there is Tk = W ∗k exp (−Akhk) ∈ C∞ (H) (see also Theorem 4.2).
Now let µ ∈ σp (Tk) , k = 1, 2, . . . , n, be an eigenvalue of the operator Tk with any

eigenvector x (µ) ∈ H, i.e. for any k = 1, 2, . . . , n

W ∗k exp (−Akhk)x (µ) = µx (µ) .

In this case µ ∈ C is an eigenvalue number of the adjoint operator toW ∗k exp (−Akhk),
that is, of the operator exp (−Akhk)Wk with the same eigenvector x (µ) in H. Then
the last relation implies that

exp (−Akhk)WkW
∗
k exp (−Akhk)x (µ) = µ (W ∗k exp (−Akhk)) ·

· (exp (−Akhk)Wkx (µ)) = µ (W ∗k exp (−Akhk)) · µ (W ∗k exp (−Akhk))x (µ)

and from this we obtain

exp (−2Akhk)x (µ) = |µ (W ∗k exp (−Akhk))|2 x (µ) .

Hence
|µ (W ∗k exp (−Akhk))| = exp (−λ (Ak)hk)

and from this relation we have

ln |µ| = (−hk)λ (Ak) , k = 1, 2, . . . , n.

Thus

σ (LWk
) =

{
λ ∈ C : λ = λm (Ak) +

(−i)
hk

(arg λm (Tk) + 2pπ) , m ∈ N, p ∈ Z
}

for every k = 1, 2, . . . , n.

5. ASYMPTOTICAL BEHAVIOR OF THE EIGENVALUES
OF THE NORMAL EXTENSIONS

In this section we investigate the asymptotic behavior at infinity of eigenvalues of the
normal extensions (having discrete spectrum) of the minimal operator L0 in L2.

We now state the following result for the special case which can be easily proved
by Theorem 4.5.

Theorem 5.1. If dimH < +∞, then every normal extension LW of the minimal
operator L0 in L2 has a discrete spectrum and its eigenvalues at the infinity have the
following asymptotics:

|λn (LW )| ∼ δn, 0 < δ < +∞, as n→ +∞.

Now we can prove the main result of this section.
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Theorem 5.2. If for each k = 1, 2, . . . , n, A−1
k ∈ C∞ (H) and

λm (Ak) ∼ βkmαk , 0 < βk, αk < +∞, as m→∞,

then the eigenvalues of any normal extension LW of the minimal operator L0 in L2

have the following asymptotics:

|λq (LW )| ∼ γq
α

1+α , 0 < γ, α < +∞, α = max
1≤k≤n

αk, as q →∞.

Proof. Without loss of generality we can assume that for every k, j = 1, 2, . . . , n,
k 6= j, the condition σ (Ak) ∩ σ (Aj) = ∅ is satisfied.

We set
N (λ) :=

∑
|λ(S)|≤|λ|

1, λ ∈ C,

that is, the number of eigenvalues of a linear closed operator S in a Hilbert space
which modules do not exceed |λ| , λ ∈ C. This function takes values in the set
of non-negative integer numbers and, in the case of an unbounded operator S,

non-decreasing and tends to +∞ as |λ| → +∞. Here let LW =
n⊕
k=1

LWk
be any

normal extension of the minimal operator L0 in L2,

Nk (λ) :=
∑

|λ (L)| ≤ |λ|
λ ∈ σ (LWk

)

1, k = 1, 2, . . . , n

and
N (λ) :=

∑
|λ(LW )|≤|λ|

1, λ ∈ C.

Since σ (Ak)∩ σ (Aj) = ∅ for all k, j = 1, 2, . . . , n, k 6= j, then from Theorem 4.5 it is
clear that

N (λ) =
n∑
k=1

Nk (λ), λ ∈ C.

By Theorem 4.5 for each λ ∈ σ (LWk
) , k = 1, 2, . . . , n, we have

|λ (LWk
)| =

[
λ2
m (Ak) +

1
h2
k

(δm + 2pπ)2

]1/2

,

where δm := arg λm (Tk) , k = 1, 2, . . . , n, m = 1, 2, . . . . Since 0 ≤ δm ≤ 2π for each
m ∈ N, then for λ ∈ σ (LWk

) , k = 1, 2, . . . , n from the last equality we have[
λ2
m (Ak) +

4π2

h2
k

p2

]1/2

≤ |λ (LWk
)| ≤

[
λ2
m (Ak) +

4π2

h2
k

(p+ 1)2

]1/2

,
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k = 1, 2, . . . , n , m ∈ N, p ∈ Z. Therefore the eigenvalues λ ∈ σ (LWk
) , k =

1, 2, . . . , n, have the following asymptotical behavior:

|λ (LWk
)| ∼

[
β2
km

2αk +
4π2

h2
k

p2

]1/2

, k = 1, 2, . . . , n , m ∈ N, p ∈ Z.

An argument similar to that used in [15] (or in [28]) shows that for the eigenvalues of
LWk

, k = 1, 2, . . . , n, it can be found that the following asymptotic formula holds:

Nk (λ) ∼ γk |λ|
1+αk
αk , 0 < γk < +∞, as |λ| → +∞.

Hence

N (λ) ∼
n∑
k=1

γk |λ|
1+αk
αk = |λ|

1+α
α

(
n∑
k=1

γk |λ|
1+αk
αk
− 1+α

α

)
∼ γ∗ |λ|

1+α
α ,

where 0 < γ∗ < +∞, α := max
1≤k≤n

αk, as |λ| → +∞. From this relation it is easy to

see that
|λq (LW )| ∼ γq

α
1+α , 0 < γ, α < +∞, as q → +∞.

This completes the proof.

Remark 5.1. In the case of n = 1, i.e. A (t) = A, a ≤ t ≤ b, the analogous problem
has been investigated in [15].
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