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MATRICES DEFINED BY FRAMES

Abstract. Matrix representations of bounded Hilbert space operators are considered. The
matrices in question are defined with respect to frames, rather than bases. The frames,
a generalisation of bases, used extensively in applied harmonic analysis, are overcomplete
sequences. We consider some properties related to tight frames, where, up to some multi-
plicative constant, a form of Parseval Identity takes place. We also describe parts of spectra
of operators in terms of their matrices.
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1. INTRODUCTION

The matrix representation of bounded linear operators on a Hilbert space, although
generalising the standard finite-dimensional procedure, is not quite popular among
operator theorists, at the same time forming one of the most investigated objects
in numerical analysis of linear equations. Recent advances in harmonic analysis and
signal theory related to wavelet bases and frames provide a motivation to study frame
coefficients of operators. In [2] Peter Balazs introduces matrices with respect to pairs
of frames for bounded linear operators on a Hilbert space, showing the homomorphic
nature of such representations and a couple of properties collected in Theorem 3.1
below.

But essential in the study of operators – the (Hermitian) conjugation operation
seemed not well represented in this general setting. It turns out however, that
in the presence of additional assumption of tightness, the matrix representation is
star-homomorphic (Theorem 3.2). As a consequence, the crucial properties of oper-
ators, like self-adjointness, or normality, are shared by their matrices of with respect
to tight frames.

In Section 4 we apply this preservation of the involution to the Schatten–von
Neumann ideal membership criterion. We also consider the class of Bessel multipliers
and the related question raised in [3].
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Section 5 is related to a part of the first-named Author’s Master Thesis [1]. Here
some basic subsets of spectra, like the point spectrum, continuous spectrum and the
essential spectrum of T are considered. In some non-trivial way these spectra are
related to appropriate parts of the spectrum of the corresponding matrix, which (at
least numerically) are easier to localise.

2. TIGHT FRAMES

To a sequence G = (gj), j ∈ N of vectors in a Hilbert space H one associates the
analysis operator C = CG . It assigns to a given vector f ∈ H the sequence

Cf := (〈f, gj〉)

of its inner products with the members of G. The Bessel condition with constant K
holds for G, if each Cf is square-summable and the operator norm of C : H → `2

satisfies ‖C‖2 ≤ K. If C is also bounded from below (say, by κ
1
2 ), then G is called

a frame. The frame bound is any pair (κ,K) of positive numbers such that

κ‖f‖2 ≤
∞∑
j=1

|〈f, gj〉|2 ≤ K‖f‖2. (2.1)

These frame bounds may be equal, in which case we speak of a tight frame with bound
κ = K. Parseval Frames are defined as tight frames with bound 1. For such frames
the relation (2.1) becomes just one equality.

We shall assume from now on the frame condition (2.1). Along with the analysis
operator comes its adjoint, D = DG := C∗G mapping `2 into H, called the synthe-
sis operator, which sends the square-summable sequence (αj) ∈ `2 to the vector∑
αjgj ∈ H. (The norm-convergence of the series follows easily from the Bessel con-

dition – cf. for example [6], Theorem 3.2.3.)
Finally, their composition S = SG , called the frame operator, given by

S := DC, Sf =
∑
〈f, gj〉gj

is self-adjoint, positive, with κIH ≤ S ≤ KIH .
Now G̃ := (S−1gj) is again a frame with bounds K−1, κ−1, called the canonical

dual frame for G. The canonical dual frame for G̃ (i.e. G’s second canonical dual) is
again G. The equality S−1S = IH (the identity on H) yields

DeG ◦ CG = IH , (2.2)

that applied to vectors f ∈ H becomes the Reconstruction Formula:

f =
∞∑
j=1

〈f, gj〉g̃j , where g̃j := S−1gj . (2.3)
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The dual frame is biorthogonal to the sequence (gj) only in one case: if (and only
if) the later is a Riesz basis. The latter occurs iff the system G is ω-independent
(equivalently in the case of frames – ω-minimal), so that the above infinite series
decomposition (2.3) of f is unique for any vector f ∈ H. In the opposite case there
exist other frames (called non-canonical dual frames Ḡ = (ḡj) that still reconstruct f
as in (2.3), when put in place of the g̃j ’s. Here and whenever no confusion may result,
we suppress the index denoting frames putting tilde to indicate the canonical dual
frame operators and bar – for any other dual frame (rather than complex conjugation,
or closure!). Note that apart of D̃C = I we have also D̄C = I.

For tight frames, normalised if necessary by multiplying each gj by appropriate
constant (namely, by κ−

1
2 ), one gets g̃j = gj (self-duality), simplifying the Recon-

struction Formula which then says that D is a left inverse to C.
In any case, the (self-adjoint) isomorphism S−

1
2 applied to the frame sequence

yields a normalised tight frame (S−
1
2 gj). Hence (in some cases) the tightness as-

sumption for frames is not so stringent, although the mentioned isomorphism can
involve complications. Being tight, a frame can still be overcomplete, as the classical
example of three unit-length vectors in R2 positioned at equal angles 2

3π shows.
From the signal engineering point of view, overcompleteness is often an advantage

due to the better stability of the Reconstruction Formula than in the case of bases.
If the signal comes contaminated by a white noise, part of the noise is killed (if the
overcomplete vectors are “evenly positioned”), since unlike the original signal, the noise
has no “directional polarisation” ([6], Prop. 5.9.1, [8]). Good sources of references on
frames are the books [6] by Ole Christensen, [8] by Stéphane Mallat or the review
paper [5].

3. MATRIX REPRESENTATION OF OPERATORS

If Gk = (gjk)∞j=1, k = 1, 2 are frames in Hilbert spacesHk, the coefficients of a bounded
linear operator T : H1 −→ H2 are defined simply as

Tnm := 〈Tgm1, gn2〉.

The so obtained matrix (Tnm) will be denoted as Matr(T ), or Matr(G2,G1)(T ). It
belongs to the algebra B(`2) of those infinite matrices that correspond to bounded
linear endomorphisms of `2 (cf. (iii) below).

In the opposite direction, the operator O(G2,G1)(M) = O(A) assigned to a bounded
matrix A = (Ank)n,k∈N maps f ∈ H1 into the (norm convergent) sum

O(G2,G1)(A)f :=
∞∑
k=1

∞∑
n=1

Akn〈f, gn1〉gk2.

Theorem 3.1, Proposition 3.2 and Corollary 3.3 in [2] are summarised as follows.
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Theorem 3.1 (P. Balazs).

(i) Treated as an operator on `2, the matrix Matr(T ) is bounded and

Matr(G2,G1)(T ) = CG2 ◦ T ◦DG1 with ‖Matr(G2,G1)(T )‖ ≤
√
K1K2‖T‖.

(ii) Operator O(G2,G1)(A) : H1 −→ H2 is bounded and satisfies

O(G2,G1)(A) = DG2 ◦A ◦ CG1 with ‖O(A)‖ ≤
√
K1K2‖A‖.

(iii) For any frames G1,G2,G3 and operators T : H1 → H2, L : H2 → H3 the Product
Formula holds:

Matr(G3,G2)(L) ·Matr(fG2,G1)(T ) = Matr(G3,G1)(LT ),

which together with G = ˜̃G and (i) implies that Matr(G,eG) is a (non unital)
continuous homomorphism of Banach algebra B(H) into B(`2).

(iv) We have the following Operator Reconstruction Formula:

O(G2,G1)(Matr(fG2,fG1)(T )) = T,

O(G,eG)(I`2) = IH .

To simplify and shorten the formulation of the proofs of (iii) and (iv) one can
use the equalities of (i), (ii) together with the Reconstruction Formula in its operator
form (2.2), making calculations on vectors unnecessary.

Note, that (iv) means only one-sided inverse, due to one-sided character of (2.2).
In particular, for overcomplete frames the operation Matr(G2,G1) of assigning matrices
to operators is injective, but its range differs from B(`2). Even worse, O(G,eG), although
unit-preserving, may not be a homomorphism, as it fails to obey the product formula
in the overcomplete frames case (cf. [3], Cor. 5.3). Only in the case of pairs of Riesz
bases both Matr(G2,G1) and O(G2,G1) are (unital) isomorphisms.

Now let us see what happens with the involution.

Theorem 3.2. The assignment Matr(G,eG) is a *-morphism, i.e. the matrix
Matr(G,eG)(T ∗) is the Hermitian adjoint to the matrix Matr(G,eG)(T ) for any bounded
linear operator T : H → H if and only if the frame G is tight.

To prove this result we use Schur Lemma which says that the commutant (the
centre) of B(H) consists exactly of scalar multiples of the identity. This follows easily
from calculating the products with rank one operators of the form Tx = 〈x, u〉w with
x, u, w ∈ H. Then ATx = 〈x, u〉Aw, while TAx = 〈Ax, u〉w. Hence Aw = αw, where
α = 〈u, u〉−1〈Au, u〉.
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Proof of Theorem 3.2. Let S = S∗ be the frame operator for G. Its inverse is also
self-adjoint. Since the entries of Matr(G,eG)(T ∗) are

〈T ∗gm, g̃n〉 = 〈T ∗Sg̃m, g̃n〉 = 〈T ∗Sg̃m, S−1gn〉 = 〈S−1T ∗Sg̃m, gn〉,

these are equal to 〈Tgn, g̃m〉 = 〈T ∗g̃m, gn〉-the entries of the Hermitian conjugate to
Matr(G,eG)(T ) if and only if S−1T ∗S = T ∗. Indeed the values of these (bounded linear)
operators coincide on each g̃m, due to the linear density of the gn’s. Multiplying both
sides on the left by S we see (as T ∗ run through all B(H)) that this amounts to S
being in the centre of B(H). But the latter equals {αIH : α ∈ C}, as Schur Lemma
asserts. The frame is tight with bound κ iff S = κIH (cf. [6]).

Corollary 3.3. The matrix Matr(G,eG)(T ) representing bounded linear operator T ∈
B(H) w.r. to a tight frame is self-adjoint (normal or a projection – respectively) iff
the operator T has the corresponding property.

This follows directly from Theorem 3.2 and from the product formula (iii) of The-
orem 3.1. Indeed, Matr(G,G) is then a C∗-algebraic monomorphism and the considered
properties involve just involutions and products.

Some care must be taken only with those properties that refer to the unit element,
not preserved by our morphism, in general.

Corollary 3.4. The polynomial functional calculus is consistent with the matrix rep-
resentation Matr(G,eG) in tight frames, i.e. Matr(p(T )) = p(Matr(T )) only for the
polynomials vanishing at zero. The same applies to the polynomials in the (noncom-
muting) variables (z, z̄), i.e. Matr(p(T, T ∗)) = p(Matr(T ),Matr(T ∗)).

Proof. Indeed, if a polynomial p satisfies p(0) = 0, then p(z) = c1z+· · ·+ckzk, so that
p has no free term. Consequently, p(T ) = c1T + · · ·+ ckT

k has no nonzero summand
of the form c0T

0 = c0IH and higher degree summands transform as required, by
the Product Formula (iii) of Theorem 3.1 and by linearity. Since z̄(T ) = T ∗, the
remaining claim follows analogously from Theorem 3.2.

4. Sp-IDEALS MEMBERSHIP

Again we fix a tight frame G and let Matr := Matr(G,eG). Recall that an operator
T ∈ B(H) is said to belong to the Schatten–von Neumann ideal Sp = Sp(H) if
the eigenvalues of |T | (repeated according to their multiplicity) belong to `p, where
|T | := (T ∗T )

1
2 . The Sp-norm ‖T‖p is the `p-norm of the sequence of these eigenval-

ues. As the square root function is a uniform limit of some polynomials pn on finite
intervals [0, ‖T‖2], the star-homomorphism Matr(·) sends |T | into |Matr(T )|. Indeed,
as pn(0) →

√
0 = 0, the polynomials pn(z) − pn(0) involving no free terms also do

the job. Here we are using the (isometric) functional calculus based on the algebra of
continuous functions on the spectrum of a self-adjoint element of a C∗-algebra. Now
one applies Corollary 3.4 of the previous section.
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The same is true of the function t 7→ |t|
p
2 . Hence to |T |

p
2 there corresponds the

matrix |Matr(T )|
p
2 . The relation T ∈ Sp is equivalent to the membership of |T |

p
2 in

S2 – the set of all Hilbert – Schmidt operators.
Applying the Parseval Identity for G, or its counterpart (estimates (2.1)) in the case

of general (even non-tight) frames, one obtains equivalence between the membership
of an operator T in the Hilbert–Schmidt class S2 with the analogous property for
its matrix (in an arbitrary pair of frames), as in [2]. The Hilbert–Schmidt condition
for matrices is known as being a Frobenius matrix, ie. having square-summable in
modulus entries. The H-S norm of T is estimated in [2] by

√
K1K2 times the H-S

norm of its matrix Matr(G1,G2)(T ), where Kj are the Bessel constants of Gj . In our
tight frame case G2 = G̃1, implying K1K2 = 1. The H-S norms of T and of its matrix
are then equal, since a second estimate of Proposition 3.6 in [2] applies.

In order to extend the above for other values of p we may apply this p = 2 – case
to the operator |T |

p
2 and to the corresponding matrix |Matr(T )|

p
2 .

Corollary 4.1. T ∈ B(H) belongs to the Schatten–von Neumann ideal Sp if and
only if so does its matrix M with respect to a tight frame G. Moreover, the following
equality takes place in the normalised tight frame case:

‖T‖p = ‖M‖p

for any finite number p ≥ 1.

In [3] operators Mm = Mm,G2,G1 called Bessel multipliers (defined by bounded
scalar sequencesm ∈ `∞) were considered. In the case of frames, denoting by diag(m)
the diagonal matrix whose main diagonal entries are given by ajj = mj , we note that
Mm = O(G2,G1)(diag(m)). The linear mapping that assigns Mm to a given m ∈ `∞
is bounded in various pairs of norms. It is shown in [3] (even for Bessel sequences)
that ‖Mm‖ (operator norm) is estimated by

√
K1K2‖m‖∞, ‖Mm‖p ≤

√
K1K2‖m‖p

in the special cases p = 1, 2, leaving open the question for other values of p > 1.
When trying to argue as in the proof of Corollary 3.3, one meets difficulty: Unlike

Matr(·), the assignment O(·) is no longer homomorphic. Nonetheless, one may apply
the interpolation method, yielding the same estimate by

√
K1K2‖m‖p. Indeed, the

scale of Shatten–von Neumann ideals interpolates in the same way as the scale of
`p-spaces (cf. [4], Sect. 7.4). This works in the general case of Bessel sequences,
thanks to the mentioned estimates of [3]. Even simpler argument is based on the
inequalities ‖ST‖p ≤ ‖S‖p‖T‖ and the ideal property of Sp together with (ii) of
Theorem 3.1.

The Banach space analogue to frames, called atomic decompositions, may also be
considered (cf. [7,9]). It will be interesting to extend the above results to this general
case.

5. SPECTRA AND THE MATRIX REPRESENTATION

Now we consider matrices of a bounded linear operator T : H → H with respect to
a given dual pair (G, Ḡ) of frames. The bar indicates the possibly non-canonical dual
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and the shorthand notation D̄ will frequently be used for the synthesis operator DḠ .
In this case the equality D̄C = I will replace the formula (2.2).

If the frame G is overcomplete, we have no equality between the spectra σ(T ) of
T and σ(M) of its matrix counterpart M = MatrG,Ḡ(T ) = CGTDḠ . Similar problem
occurs for basic parts of the spectrum (like the point spectrum denoted by σp(T ) and
consisting of all eigenvalues of T ). Indeed, if only Ḡ is overcomplete, DḠ has nontrivial
nullspace ker(DḠ) and than for any T one has 0 ∈ σp(M), since

ker(DḠ) ⊂ ker(M).

Similarly, non-density of the range of CG has the “adding zero effect” on the con-
tinuous spectrum σc(M) of M . (We recall its definition later.) Nonetheless, point 0
is the only possible discrepancy between the corresponding spectra:

σ(M) \ {0} = σ(T ) \ {0},

but this follows easily from algebraic fact that nonzero parts of the spectra of AB
and BA coincide – here applied to A = C, B = TD̄. Similar equality holds for the
point spectra. (We provide a short proof for the sake of completeness, although this
type of result seems known in the perturbation theory setup.)

Theorem 5.1. For any frame G and its dual Ḡ we have

σp(M) \ {0} = σp(T ) \ {0}.

Proof. Assume first that λ ∈ σp(T ). Hence for some v ∈ H \ {0}

λv = Tv = TD̄Cv.

Multiplying from the left both sides by C, we get λCv = CTD̄Cv = MCv. By the
frame condition (2.1), we have Cv 6= 0, hence λ ∈ σp(M).

Working in the opposite direction, multiply both sides of λw = Mw from the left
by D̄, taking into account the fact that D̄C = IH , to obtain

λD̄w = D̄Mw = D̄CTD̄w = TD̄w.

The eigenvector D̄w of T is nonzero, if we assume that λw 6= 0, since the latter equals
Mw = CTD̄w. This yields λ ∈ σp(T ).

In what follows we adopt the notation

Tλ = T − λIH

for T ∈ B(H), λ ∈ C, useful in dealing with various parts of spectra. Let us first
consider the continuous spectrum σc(·) defined by the following two conditions:

0 ∈ σc(T )⇔ 0 ∈ σ(T ) \ (σp(T ) ∪ σp(T ∗)), λ ∈ σc(T )⇔ 0 ∈ σc(Tλ).
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Here 0 /∈ σp(T ∗) is equivalent to the density (in H) of R(T ), the range of T . Since
for overcomplete frames any dual frame synthesis operator D̄ is non-injective, so is
M = CTD̄. In this case 0 /∈ σc(M) for any operator T .

Let us fix an infinite matrix K which yields a bounded operator on `2 and satisfies
the equalities

CD̄K = KCD̄ = CD̄ (equivalently, KC = C and D̄K = D̄). (5.1)

For example, one can take either K = I, or K = CD̄. With any choice of K the
continuous spectrum of T has the same description in terms of the related matrix
M = CTD̄ with respect to G and any of G’s dual frames Ḡ:

Theorem 5.2. A nonzero λ belongs to σc(T ) if and only if λ /∈ σp(M), R(M−λK) 6⊃
R(C) and R(M− λK) ⊃ R(C).

Proof. To show one containment, fix λ ∈ σc(T ) \ {0}. Then λ /∈ σp(T ). By The-
orem 5.1, λ /∈ σp(M). Also, the range of Tλ does not contain some vector y ∈ H.
If Cy were in R(M− λK), for some x ∈ `2 we would have Cy = CTD̄x − λKx
and multiplying by D̄ from the left we get y = TD̄x − λD̄Kx = Tλ(D̄x), in
contradiction to our choice of y outside the range of Tλ. To see the density of
R(M− λK) in R(C), consider b of the form b = Cy for some y ∈ H. The range
of Tλ is dense, so one finds a sequence of vectors xn ∈ H with Tλxn → y. Then
(M−λK)Cxn = CTD̄Cxn−λKCxn = CTλxn converge to Cy, since C is continuous,
showing the required density.

Conversely, let λ 6= 0 satisfy these three conditions. As above, we see that
λ /∈ σp(T ). Also Tλ cannot be surjective, otherwise the range of (M − λK)C =
CTD̄C − λKC = CTλ would coincide with that of C, which is not the case.
Similarly to the previous part, let us assume, that y ∈ H. Then there exists
such a sequence an ∈ `2, that (M − λK)an → Cy. By continuity of D̄ we have
TλD̄an = D̄CTD̄an − λD̄Kan = D̄(M − λK)an → y.

Finally, to describe the essential spectrum σess(T ) (with λ /∈ σess(T ) meaning the
closedness and finite codimension of R(Tλ) plus finiteness of dim ker(Tλ)) one has to
know not only the range of C, as was the case with σc(T ), but ker(D̄) as well.

In the canonical dual frame case

D̃(a) =
∑

ang̃n =
∑

anS
−1gn = S−1D(a)

for any a = (an) ∈ `2, showing D̃ = S−1D and, consequently,

ker(D̃) = kerD = R(C)⊥.

Note, that in general the dimension of ker(D̄) (a dual frame synthesis operator)
can be infinite, leaving 0 in σess(M), hence the discrepancy at 0 depends on the frame
behaviour. The nonzero part is again described below under additional assumption
that the dual frame used to represent T is the canonical one, i.e. in the Ḡ = G̃ case.
We conjecture that this requirement can be dropped, but at the moment we can only
prove the following description:
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Theorem 5.3. Let M = CTD̃ be the matrix representation of T using a frame G
and its canonical dual frame G̃. Then λ /∈ σess(T ) ∪ {0} iff the range of Mλ is closed
and the dimensions of ker(Mλ)	 ker(D̃) and of R(C)	R(Mλ) are both finite.

Proof. Take first λ /∈ σess(T ) ∪ {0}. To see the closedness of R(Mλ) consider any
convergent sequence of its points bn. We want to show that its limit, say b = lim bn
also belongs to R(Mλ), i.e. is of the formMλa for some a ∈ `2. Since for some points
an in `2 we have bn = CTD̃an − λan, applying D̃ on both sides and using D̃C = I,
it follows that the sequence

TλD̃an = TD̃an − λD̃an

converges to D̃b. In view of the closedness of R(Tλ), the latter limit is in this range:
D̃b = Tλx for some x ∈ H. Then

MλCx = CTD̃Cx− λCx = CTλx = CD̃b

and to solve the equation Mλa = b for a it suffices to put a = Cx + 1
λ (CD̃b − b).

Indeed, developing Mλa = (CTD̃ − λI)(Cx+ 1
λ (CD̃b− b)), we see that it is

CTD̃Cx− λCx+
1
λ

(CTD̃CD̃ − CTD̃)b− (CD̃ − I)b = MλCx− CD̃b+ b = b.

For a ∈ kerMλ orthogonal to ker D̃, we are going to show that D̃a ∈ kerTλ.
Indeed,

TλD̃a = D̃CTD̃a− λD̃a = D̃(M − λI)a = 0.

Hence the inclusion D̃(ker(Mλ) 	 ker(D̃)) ⊂ kerTλ follows. But D̃ restricted to
ker(Mλ)	 ker(D̃) is injective, so we deduce

dim(D̃(ker(Mλ)	 ker(D̃))) = dim(ker(Mλ)	 ker(D̃)) ≤ dim(kerTλ) <∞.

To see the finite dimensionality of R(C) 	 R(Mλ) it suffices to note that since
R(C) ⊥ kerD, D maps this subspace injectively and its dimension equals to that of
D(R(C) 	 R(Mλ)). The latter is contained in H 	 R(Tλ). Indeed, let b ∈ R(C) 	
R(Mλ). Then for any x ∈ H we have

〈Db, Tλx〉 = 〈b, CTD̃Cx− λCx〉 = 〈b,MCx− λCx〉 = 0.

The other half of the proof follows similar pattern. Given λ satisfying the three
conditions for M , we check that the range of Tλ is closed by considering a convergent
(to some limit y) sequence yn ∈ R(Tλ). Then yn = Tλxn for certain xn ∈ H and

(M − λI)Cxn = MCxn − λCxn = CTD̃Cxn − λCxn = Cyn.

But Cyn → Cy and the range of Mλ, being closed, contains Cy. Consequently,
Cy = Mλa for some a ∈ `2. Applying D̃ from the left, we get

y = D̃Cy = D̃Ma− λD̃a = TD̃a− λD̃a = TλD̃a.
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To estimate dim(kerTλ) we check that C(kerTλ) ⊂ kerMλ, by showing

(M − λI)Cx = CTD̃Cx− λCx = CTλx = 0.

This suffices, C being injective, to get

dim kerTλ = dimC(kerTλ) ≤ dim kerMλ <∞.

The cokernel H 	 R(Tλ) of Tλ is mapped by the (injective) dual frame analysis
operator C̃ into the (finite dimensional) subspace R(C)	R(Mλ), which implies the
finiteness of its dimension. Indeed, for any a ∈ `2

〈C̃y,Mλa〉 = 〈C̃y, CTD̃a− λa〉 = 〈y, T D̃a− λD̃a〉 = 〈y, TλD̃a〉 = 0.

Moreover, asD = SD̃, by taking the adjoints of both sides we obtain C = C̃S∗. As
S is bijective, the ranges of C and C̃ have to coincide and C̃(H	R(Tλ)) ⊂ R(C).
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