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3-BIPLACEMENT OF BIPARTITE GRAPHS

Abstract. Let G = (L, R; E) be a bipartite graph with color classes L and R and edge set
E. A set of two bijections {1, 92}, ¢1,92 : LUR — LU R, is said to be a 3-biplacement
of G if p1(L) = p2(L) =L and ENi(E) =0, ENg3(E) =0, ¢1(E) N 5(E) = 0, where
©1, o5 are the maps defined on E, induced by ¢1, @2, respectively.

We prove that if |L| = p, |R| = ¢, 3 < p < q, then every graph G = (L, R; F) of size at
most p has a 3-biplacement.
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1. INTRODUCTION

1.1. BASIC DEFINITIONS

Throughout the paper we will only consider finite, undirected graphs without loops
and multiple edges.

Let G be a graph with vertex set V(G) and edge set E(G). The cardinality of the
set V(G) is called the order of G and is denoted by |G|, while the cardinality of the
edge set E(G) is the size of G, denoted by ||G]].

For a vertex x € V(G), N(z,G) denotes the set of its neighbors in G. The degree
d(x,G) of the vertex x in G is the cardinality of the set N(z,G). A vertex z of G is
said to be pendent (resp. isolated) if d(x,G) =1 (resp. d(z,G) = 0).

A set of pairwise non-incident edges in a graph G is called a matching.

Let G; and G4 be vertex disjoint graphs. The union G = G1 UG5 is a graph with
V(G) = V(G1) UV (G2) and E(G) = E(G1) U E(G2). If a graph G is the union of k
disjoint copies of a graph H, then we write G = kH.

Let G = (L, R; E) be a bipartite graph with vertex set V(G) = L U R and edge
set F(G) = E. We denote then L(G) = L and R(G) = R, and we call these sets the
left and right set of bipartition of the vertex set of G.

We denote by AL (G) (resp. Ar(G)) the maximum vertex degree in the set L (resp. R).
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If |L| = p and |R| = ¢, we say that G is a (p, q)-bipartite graph. K, , stands for
the complete (p, q)-bipartite graph. G s the complement of G in K,,. Thus

ébip = (L, R; E'), where E’ consists of all the edges joining L with R which are not

in F.

1.2. 2-PLACEMENT AND 3-PLACEMENT OF SIMPLE GRAPHS

Definition 1. Let G be a simple graph. We say that G is 2-placeable if there exists
a bijection ¢ : V(G) — V(G) such that

if xy € E(G), then o(z)e(y) ¢ E(G).
The bijection @ will be called a 2-placement of G.

The study of placing problems was initiated by a series of papers published in the
late 1970s. The following theorem, proved by Sauer and Spencer [3]|, was the first
result in this area.

Theorem A. Let G be a graph of order n. If |G| < n — 2, then G is 2-placeable.

This theorem can be generalized in a great variety of ways. Wozniak and Wojda
[5] showed that under the assumptions of Theorem A there exists a 3-placement of a
given graph G, unless G is an exception (see Theorem B below).

A 3-placement of a given graph can be defined analogously to a 2-placement.

Definition 2. Let G be a simple graph of order n. A graph G is 3-placeable if
there exist bijections p1,p2 @ V(G) — V(G) such that E(G) N ¢}(E(Q)) = 0,
E(G)Nes(E(GQ)) = 0, ¢i(E(Q)) N w5(E(G)) = 0, where the map ¢} defined on
E(G) is induced by ¢; (i = 1,2), that is ¢ (zy) = @i(x)ei(y).
The set {p1,p2} is called a 3-placement of G.

Wozniak and Wojda proved the following theorem.

Theorem B. Let G be a simple graph of order n. If |G| < n — 2, then either G is
8-placeable or G is isomorphic to K3 U2K, or to K4 U4K7.

Exhaustive surveys of the results concerning the problems of placing of simple
graphs are given in [1, Chapter 8] and [4]. However, we would like to focus on
placements of bipartite graphs, the so-called biplacements, defined by Fouquet and
Wojda [2] in 1993.

1.3. 2-BIPLACEMENT AND 3-BIPLACEMENT OF BIPARTITE GRAPHS
Definition 3. Let G = (L, R; E) be a bipartite graph. We say that G is 2-biplaceable
if there exists a bijection ¢ : LUR — LU R such that ¢(L) = L and

if xy € E, then ¢(z)p(y) ¢ E.

The bijection ¢ is called a 2-biplacement of G.
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Fouquet and Wojda [2] proved the following theorem, which is an analogue of
Theorem A for bipartite graphs.

Theorem C. Let G = (L, R; E) be a (p,q)-bipartite graph such that either p > 3,
g>3and |G| <p+q—3, 0or2=p<qand |G| < p+q—2. Then G is 2-biplaceable.

The aim of this paper is to find a sufficient condition for a bipartite graph to be
3-biplaceable; in other words, find an analogue of Theorem B for bipartite graphs.

By analogy to a 2-biplacement we consider a 3-biplacement of a bipartite graph.
Let G = (L, R; E) be a (p, q)-bipartite graph. Then G can be considered as a
subgraph of the complete bipartite graph K, ,

Definition 4. The graph G = (L, R; E) is 3-biplaceable if there exist bijections
01,02 : LUR — L UR such that p1(L) = ¢2(L) = L and EN pi(E) = 0,
ENes(E) =0, oi(E) N 5(E) = 0, where the maps ¢3,¢5 : E — E(K,,) are
induced by @1, 2, respectively (i.e., ©i(zy) = wi(z)pi(y) for i=1,2).
The set {p1,92} is called a 3-biplacement of G.

It is easy to see that a (p, ¢)-bipartite graph G is 3-biplaceable if and only if we

can find two edge-disjoint copies of G, say G, and Gy, in the graph ébw. We then call
the edges of G black, the edges of G, red, the edges of G} blue, and there is L(G) =
L(G,) = L(Gy), R(G) = R(Gy) = R(Gy), E(G) N E(Gy) = 0, E(G) N E(Gy) = 0,
E(GT) n E(Gb) = 0.

Now we are ready to formulate the main result of this paper.

2. MAIN RESULT

Let G; denote a (2,3)-bipartite graph such that ||G1|| =2 and AL(G1) = 2.

Our goal is to prove the following theorem.

Theorem 1. Let G = (L, R; E) be a (p,q)-bipartite graph, p < q and ¢ > 3. If
G|l < p then either G is 3-biplaceable or G is isomorphic to G .

Proof. We will proceed by induction on p + q.
The assertion is easy to check for p < 3 and g = 3 (see Fig. 1), and hence for all
q=3.

p+q=4 p+q=5

p+q=6
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Now assume that p+ ¢ > 8, ¢ > p > 4, and the theorem holds for all integers
p'>1,¢ >3, such that p’ < ¢ and p' +¢' < p+q.

Let G = (L, R; E) be a (p, q)-bipartite graph with p and ¢ as above. Without loss
of generality, we can assume that ||G|| = p. We will show that G is 3-biplaceable.

In the proof, we shall consider three cases.

Case 1. AL(G) > 3.

Let v € L be a vertex such that d(v,G) = AL(G). It is evident that there are at
least two isolated vertices, say x and y, in L.

We define a new graph G’ := G \ {v,z,y}. G’ is (p/,q’)-bipartite, where p’ =
p—3>1,¢ =qg>4,p <¢. Thus G’ # G; and ||G’|| < p— 3 = p’. Hence, by the
inductive hypothesis, G’ is 3-biplaceable. Let {¢}, v} be a 3-biplacement of G”.

We define a 3-biplacement {1, 2} of G as follows:
e1(v) =z, p1(z) = v, p1(y) =y, p1(w) = ¢ (w) Yw € V(G'),
P2(v) =y, p2(x) = T, a2(y) = v, p2(w) = py(w) Yw € V(G').

Case 2. AL(G) =2.
Pick v € L with d(v, G) = 2. We need to consider several subcases.
Subcase 2.1. There is a pendent vertez in L, say x, such that N(x,G)NN(v,G) = 0.

Let N(v,G) = {w1,w2} C R, N(z,G) = {ws} C R, and let y be an isolated vertex
in L. We have to consider three subcases depending on the degrees of the vertices
wy, W2, W3.

Subcase 2.1.1. d(ws,G) = 1.

Put G' := G\ {v,z,y,w3}. G'is a (p',¢ )-bipartite graph with p’ =p—3 > 1,
¢ =q-12>3,p <, |G| =p. Obviously, G’ is not isomorphic with Gy, for
otherwise p = 5 and ¢ = 4, which contradicts the assumption p < q. By the inductive
hypothesis, there is a 3-biplacement of G', say {¢], p5}. We define bijections ¢; and
2 in the following way:
e1(v) =y, p1(z) =0, p1(y) =z, p1(w3) = w3, Y1(w) = ¢} (w) Yw € V(G'),

2(v) =z, pa(z) =y, P2(y) = v, Y2(w3) = w3, P2(w) = pa(w) Yw € V(G').
{1, 2} is a 3-biplaceament of G.

Subcase 2.1.2. d(ws,G) > 1 and d(w1,G) = d(wz,G) = 1.

In the case of p = ¢ = 4, we get one graph only. Obviously, it is 3-biplaceable (see
Fig. 2).

Thus we can assume that ¢ > 5. Then we define a graph G’ := G\ {v, z, y, w1, w2},
which is (p’, ¢')-bipartite with p’ =p—-3>1,¢ =q—2> 3, p' <¢'. Since |G'|| =p/,
there exists a 3-biplacement of G, unless G’ = G;.

In the case of G’ = G, the graph G is 3-biplaceable (see Fig. 3).
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In the case of G’ # G, let {¢], ¥4} be a 3-biplacement of G'.
To get a 3-biplacement {1, 2} of G, put:
e1(v) =y, ¢1(x) = v, p1(y) =z, p1(w1) = w1, p1(w2) = wa,
(w) = ¢1(w) Yw € V(G'),
p2(v) =z, pa(x) =y, pa(y) = v, P2(w1) = w1, Pa(w2) = wy,
wa(w) = h(w) Yw € V(G").

v w, \% W,
y W2 y W2
X W,
X W,
Fig. 2 Fig. 3

Subcase 2.1.3. d(ws,G) > 1; d(w1,G) > 1 or d(wa,G) > 1.

These assumptions imply that p > 5. It is easy to check that, for ¢ > p =5, G is
3-biplaceable. Therefore, we may assume that ¢ > p > 6.

Let u1,ug be isolated vertices in R and G’ := G \ {v,z,y, w3, u,us}. Again, G’
is 3-biplaceable; let {¢], @5} be a 3-biplacement of G'.
A set of bijections {1, 2} such that
e1(v) =y, p1(x) = v, p1(y) = z, p1(w3) = u1, p1(u1) = w3, p1(u2) = uz, p1(w) =
¢ (w) Yw € V(G'),
2(v) = T, Pa(x) =y, P2(y) = v, p2(w3) = u2, Pa(ur) = w1, p2(u2) = ws, p2(w) =
py(w) Yw € V(G'),
is then a 3-biplacement of G.

Subcase 2.2. There is a pendent vertez in L, say x, such that N(xz,G) N N (v, G)#0.

Without loss of generality, we put N (v, G) = {wy,wz} and N(z,G) = {w2}.

Consequently, for all z € L of degree 2, there is N(z,G) D {ws}, and for ally € L
of degree 1, there is N(y,G) C {w1, wa}. Otherwise, we get Subcase 2.1.

We have to consider the following subcases.

Subcase 2.2.1. For all z € L of degree 2, there is N(z,G) = {wy,wa}.

In this case all (p, ¢)-bipartite graphs for p + ¢ = 8,9, 10 are 3-biplaceable, which
is easily verifiable. Hence we can assume that ¢ > 6. If so, there are at least four
isolated vertices in R, say u1,us, U3, Uq.

A 3-biplacement {1, 2} of G is defined as follows:
e1(wr) = u1, p1(w2) = uz, p1(u1) = wi, p1(uz) = ws,
p1(w) =w Vw € V(G) \ {w1, wa, u1, us2},

p2(w1) = uz, pa(w2) = ug, P2(usz) = wi, P2(ug) = wa,
p2(w) = w Vw € V(G) \ {w1, ws, us, us}.
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Subcase 2.2.2. There exists z € L of degree 2 such that N(z,G) = {ws, w3} and
w3 # wy.

It follows that p > 5. Moreover, every pendent vertex in L is joined with ws, for
otherwise we would get Subcase 2.1. Consequently, all non-isolated vertices in L are
joined with ws.

Firstly, suppose that d(ws, G) = 1.
A trivial verification shows that the theorem is true for ¢ > p = 5. Therefore, assume
that p > 6. Let y1,y2 € L,u € R be isolated vertices in G.
Consider a graph G’ := G\ {v,z, z,y1, Y2, w2, w3, u}. G' # Gy and by the inductive
hypothesis G’ is 3-biplaceable.
A 3-biplacement of G is given by the maps 1, @2 defined as:
01(v) = 2, p1(x) = 2, 1(2) = v, P1(Y1) = Y1, P1(Y2) = Y2, P1(w2) = u, Y1(w3) = w3,
e1(u) = w2, p1(w) = ¢ (w) Yw € V(G'),
©2(v) = Y1, p2(7) = 7, 92(2) = Yo, p2(y1) = v, P2(y2) = 2, p2(w2) = w3, P2(w3) = u,
P2(u) = w2, pa(w) = @y(w) Yw € V(G'),
where {¢], ¢4} is a 3-biplacement of G’.

Secondly, suppose that d(ws, G) > 2.
It follows that d(wy,G) > 2, for if not, we would replace w; with w3, and get the
case proved above. Since all non-isolated vertices in L are joined with wsy, then
d(wq,G) > 5.
We conclude that ¢ > p > 9 and there are at least three isolated vertices
in L and six isolated vertices in R. Let us denote by yi,y2,ys isolated ver-
tices in L and by wuq,us,us3,us isolated vertices in R. Consider a graph G’ :=
G\ {v,x, 2,91, Y2, y3, Wa, w3, U1, U, U3, us }. As p > 9, there is G’ # G;. Thus G’
has a 3-biplacement, say {¢], @5}
A 3-biplacement {¢1,p2} of G is defined below:
e1(v) = z, pi(z) = @, pi(2) = v, g1(y) = g for i = 1,2,3, p1(wz) = uy,
o1(w3) = ug, p1(u1) = wa, ©1(uz) = w3, Y1(uz) = uz, P1(us) = g, P1(w) = @ (w)
Yw € V(G'),
p2(v) = w1, @2(x) = @, 92(2) = y2, p2(y1) = v, v2(y2) = 2, P2(y3) = ys,
pa(w2) = uz, pa(ws) = ua, pa(ur) = u1, p2(u2) = ua, Pa(uz) = wa, Pa(us) = ws,
p2(w) = ph(w) Yw € V(G).

Subcase 2.3. There are no pendent vertices in L.

It follows that all vertices in L are of degree 0 or 2. Three subcases need to be
considered.

Subcase 2.3.1. There are no pendent vertices in R.

Then we define sets:
A={welL: dw,G) =2}, B:={weL: dw,G) =0},
C={weR: dw,G)>2},D:={weR: dw,G) =0}
We have A C L, B C L, |A] = |B| (since |G| = p) and C C R, D C R,
IC] < |4], |C] < |B], |C| <|D|.
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It is easy to see that G is 3-biplaceable (see Fig. 4).

Subcase 2.3.2. There are no vertices in R of degree greater than 1.

Set N(v,G) = {w1, w2} C R. There is d(w1,G) = d(wz,G) = 1. We deduce that
there are at least two isolated vertices in L, say y1, y2, and, apart from v, at least one
other vertex of degree 2, say x.

It is a simple matter to show that G is 3-biplaceable in the case of ¢ > p = 4.
Therefore, we assume that p > 5 and apply the inductive hypothesis to the graph
G':= G\ {v,z,y1,y2, w1, wa}. We extend bijections ¢} and ¢} of a 3-biplacement of
G’ to 1 and @5, maps of a 3-biplacement of G, in the following way:
e1(v) =z, p1(@) = v, e1(y1) = y1, e1(¥2) = Y2, pr(w1) = w1, p1(w2) = wy,
e1(w) = ¢ (w) Yw € V(G),
©2(v) = Y2, p2(x) = Y1, p2(y1) = @, Y2(y2) = v, Y2(w1) = w1, p2(w2) = wy,
p2(w) = @y(w) Yw € V(G).

Subcase 2.3.3. There is a vertex of degree 2 in L such that one of its neighbors has
degree 1 and the other has degree at least 2.

Without loss of generality, we can choose our v to be this vertex. Put N(v,G) =
{w1,we} with d(wy,G) =1, d(ws, G) > 2.

It follows that there exists a vertex « € L such that N(z, G) = {ws, w3}, ws # wi,
and there exist isolated vertices, say y1,y2 € L and u € R.

The case of ¢ > p = 4 is left to the reader. We assume that ¢ > p > 5. In fact,
since every non-isolated vertex in L has degree 2 and ||G|| = p, it implies that p > 6.

Let G' := G\ {v, 2, y1,y2, w1, wa,u}. If G’ = Gy, then G is one of the two graphs
which are 3-biplaceable, which is easy to check. If G’ # G1, then by the inductive
hypothesis there exists a 3-biplacement {¢}, ¢4} of G'.
A 3-biplacement of G is given by the maps (1, p2 defined as
p1(v) = z, pi(z) = v, e1(y1) = Y1, v1(Y2) = Y2, p1(w1) = wi, p1(w2) = u,
e1(u) = w2, p1(w) = ¢ (w) Yw € V(G'),
©2(v) = y1, p2(x) = a2, p2(y1) = v, p2(y2) = @, Pa(w1) = wa, p2(w2) = wi,
a(u) = u, $a(w) = h(w) Yoo € V/(G).

Case 3. AL(G) =1.

By the assumption |G|| = p, all vertices in L are pendent.
We shall consider three subcases depending on the maximum vertex degree in the
set R.
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Subcase 3.1. Agr(G) =1.
The theorem is evident in this case, since the edges of G define a matching pK; ;.
Subcase 3.2. Ar(G) > 3.

It is easily seen that the theorem is true for ¢ < 5. For this reason, assume that
g > 6. Let u be a vertex in R such that d(u,G) = Ar(G) and let vy,vq2,v3 be
neighbors of u. There are at least two isolated vertices in R, say w1, ws. We define a
graph G’ := G \ {wy,wa, u,v1,v2,v3}. Obviously, G’ # Gy, since all vertices in L are
pendent. Consequently, we may define a 3-biplacement {¢1,¢2} of G as follows:
p1(wr) = u, p1(w2) = wa, p1(u) = wi, p1(v;) = v; for i =1,2,3,
@1 (w) = 9} (1) Vo € V(G),
p2(w1) = w1, pa(wa) = u, p2(u) = w2, pa(v;) = v; for i =1,2,3,
P2 (w) = h(w) Yw € V(G'),
where {¢], ¢4} is a 3-biplacement of G’.

Subcase 3.3. Ar(G) =2.

In this case, we have to consider the two situations: either there is a pendent
vertex in R or all non-isolated vertices in R are of degree 2.

Subcase 3.3.1. There is a pendent vertex in R, say wi.

If ¢ <5, then G is 3-biplaceable, which is easy to check. Assume that ¢ > 6. Let
wy € R be of degree 2 and let u be an isolated vertex in R. Let N(wy,G) = {v1}
and N(wsg,G) = {va,v3}. We may apply the inductive hypothesis to the graph
G' = G\ {wy,wa,u,v1,v9,v3}. Again, G’ # G; and, in consequence, G’ has a
3-biplacement, say {¢}, @5}

A 3-biplacement {¢1,p2} of G is defined below:

e1(w1) = w2, 1(w2) = u, ¢1(u) = w1, ¢1(vi) = v; for i =1,2,3,
e1(w) = ¢ (w) Yw € V(G),

@2(w1) = U, (PQ(WQ) = Wy, 902(11’) = W2, 302(Ui) =v; for i = 172333
p2(w) = ph(w) Yw € V(G).

Subcase 3.3.2. There are no pendent vertices in R.

A trivial verification shows that in the cases of p + ¢ = 8,9,10,11 the theorem
is true. For ¢ > p > 6, we define a graph G’ := G \ {w1, w2, u,v1,v2,v3,v4}, where
w1, ws € R are vertices of degree 2, u is an isolated vertex in R, v1,vs and v, v4 are
neighbors of w; and we, respectively. G’ is 3-biplaceable, hence so is G: put {¢1, 2}
to be:
w1(w1) = wa, p1(wa) =u, v1(u) = w1, p1(v;) =v; for i = 1,2,3,4,
e1(w) = ¢y (w) Yw € V(G'),
w2(w1) = u, pa(ws) = w1, Y2(u) = wa, Pa(v;) = v; for i =1,2,3,4,

a(w) = ph(w) Yo € V(G),
where {¢], ¢4} is a 3-biplacement of G’. O
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