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NUMERICAL METHODS FOR HYPERBOLIC
DIFFERENTIAL FUNCTIONAL PROBLEMS

Abstract. The paper deals with the initial boundary value problem for quasilinear first
order partial differential functional systems. A general class of difference methods for the
problem is constructed. Theorems on the error estimate of approximate solutions for dif-
ference functional systems are presented. The convergence results are proved by means of
consistency and stability arguments. A numerical example is given.
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1. INTRODUCTION

For any metric spaces U and V, by C(U,V) we denote the class of all continuous
functions defined on U and taking values in V. We will use vectorial inequalities
with the understanding that the same inequalities hold between their corresponding
components. Let My, be the set of k& x n matrices with real elements. For x =
(x1,...,7,) € R", p= (p1,...,pr) € R¥ and X € Myxpn, X = [Xijlic1,.. kj=1...n We
put

ol = loal + .+ oal, Ilpll = max { jpil: 1< i<k},

I1X]|| = max{ Syl 1<i< k}

Jj=1

Let a >0, 79 € Ry, Ry =[0,400), 7 = (71,...,7) € R} and b= (by,...,b,) € R"
be given, where b; > 0 for 1 <i <n. Let ¢ = (¢1,...,¢,) = b+ 7. Define the sets

E =[0,a] x (=b,b), D = [-79,0] X [-T,7],
and

Ey = [-70,0] X [—¢, ], E = ([0,a] x [-c,c]) \ E, E*=EyUEUQE.
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Given a function z: E* — R* and a point (t,z) € E, we consider the function
2(tz): D — RF defined by

Z(t,x)(s7y):’z(t+s>$+y)v (S,y)GD'

The function z(; 4 is the restriction of z to the set [t — 70,t] x [z — 7,2 4 7] and this
restriction is shifted to the set D. For a function w € C(D, R¥) we put

lw|p = max {|w(t,z)|: (t,z)e D}.

Assume that

0: ExC(D,R) = Myxn, 0=1[0ij)i=1,.k j=1,..n,
f: ExC(D,R) — R*, f=0f s fe)

are given functions in the variables (¢, z,w). Given a function ¢: Ey U0yE — R*, we
consider the quasilinear differential functional system

Oy Zz(tax) = Z Qij(tvmvZ(t,z))aszi(tvm)+fi(t7xaz(t,z))a i=1,...,k, (1)

j=1
with the initial boundary condition
2(t,x) = o(t, x) for (t,x) € EgUOyE. (2)

We consider classical solution of the above problem.

A number of papers concerning difference methods for nonlinear first order dif-
ferential or functional differential equations have been published in recent years
[1,5,8,10,13]. Nonlinear equations and finite systems of equations with initial condi-
tions and mixed problems have been studied in these papers. It is easy to construct
Euler’s type explicit or implicit difference method (for a nonlinear problem) which
satisfies the consistency conditions on all sufficiently regular solutions of a differential
or differential functional equations. The main task of these research is to find a finite
difference approximation which is stable. The method of difference inequalities and
simple theorems on recurrent inequalities are used in the investigation of the stability
of nonlinear difference-functional equations generated by initial or mixed problems.

It is easy to see that convergence results of the papers cited above are not appli-
cable to quasilinear systems (1) with initial boundary condition (2). Until now there
have been no results on the numerical approximations of classical solutions of problem
(1), (2). The aim of the paper is to construct a general class of difference methods
for (1), (2). We prove a theorem on the error estimates of approximate solutions for
quasilinear functional difference equations of the Volterra type with unknown function
in several variables. By an approximate solution, we mean a function satisfying (8),
(9). In Theorem (1) we give an estimate of the difference between the exact and
approximate solution of (6), (7). We will assume that the functions f, and gp in
(5) satisfy nonlinear estimates of the Perron type with respect to functional variables.
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Then the error of an approximate solution is estimated by a solution of an initial prob-
lem for a nonlinear difference equation. We apply this general idea to the investigation
of the stability of difference functional system generated by (1), (2). The functions
frn and pp are superpositions of f and g with suitable interpolating operators. It
is an essential fact in our consideration that we have assumed nonlinear estimates of
the Perron type for given functions with respect to the functional variables. These
assumptions imply the uniqueness of a classical solution of problem (1), (2). In the
paper, we use these general ideas for difference equations which were introduced in
[2,11,12].

Differential equations with a deviated argument and integral differential problems
can be obtained from (1), (2) by a specification of the given operators. Existence
results are given in [6].

2. DIFFERENCE FUNCTIONAL EQUATIONS

Let N and Z be the sets of natural numbers and integers, respectively. For z,Z € R",
x = (21,...,Zn), T = (T1,...,Tpn), we write z * T = (21Z1,...,TyT,). We define
a mesh on the set E* in the following way. Suppose that h = (hg,h’) where b/ =
(h1,...,hy) stand for steps of the mesh. Denote by A the set of all h = (hg, h’') such
that there exist Ny € Z and N = (Ny,...,N,) € Z" with the properties: Noho = 70
and N * ' = 7. We assume that A # () and that there exists a sequence {h\/)},
hU) € A such that lim hU) = 0. For h € A, we put ||| = ho + hy + ...+ h,. We

J—00

define nodal points as follows:
t) = rhy, 2™ =mx K, (M = (xgml), . ,xglm")),
where (r,m) € Z'*™. There exists Ny € N such that Noho < a < (No + 1)ho. Let
R}ll+n — {(t(r), (E(m))Z (n m) e Zl+7L}

and
Dnp=DNRA"  E,=EnR*,

OoER = OoE N R}IL—HL, Eop=EgN R}IL-HL, E;; = FE;, UFEy, UJE).

For a function z: Ef — R, we write 2(rm) = 2(¢(") 2™, For the above z and for a
point (¢, z(™)) € B}, we define the function Z[pm): Dn — RF by the formula:

2rm) (8,Y) = 2t 4 5,20 4y, (s,y) € Dy,
The function 2., is the restriction of z to the set
([t — 70,t™] x [ — 7, 2™ 4 7)) N RET"
and this restriction is shifted to the set Dj,. For a function w: Dy, — R*, we put

lwllp = max{ [lw™™ | (¢, 2"™) € Dy }.
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Let e; = (0,...,0,1,0,...,0) € R™ with 1 standing on j-th place. For a function

z = (21,...,2,),: Ef — RF, we define difference operators &y, 6 = (d1,...,d, ) as
follows )
Sz = Eo[zy%m) — AP 1<i<k (3)
where .
(rym) 1 (rym+e;) (r,m—ej)
Az =5 Z(ZZ + 2, )
j=1
1 r,m-re Tm—e,
82" = [ )] 1 <i<k, 1<j<n (4)
2h;
and
802 = (82 L G2,
Let

E;’l = { (t(r),x(m)) € FEy: (t(r) + ho,x(m)) € by, }
and now by (D, R¥) we denote the set of all functions w: Dj, — R*. Suppose that

on: Ej, x F(Dp, R*) — Mixy, on = [0hij Ji=1,..k, j=1,....n»
fn: E; x 3(Dy,, R*) — RF, o= (fn1s- s for)s
©Ohn: Eo.hU@th—)Rk, Ph = (Wh-17~~~;@h-k)v

are given functions. Let the operator Fj be defined by

Fyl2) ™™ = (Fya[2) ™ Flg2] ™),

n (5)
Fy.i[7] (rm) Z Oh-ij ( t(r), x(m), Z[T7m]) 5jZ§T’m) + fral t(r), JL‘(m), Z[T7m]), 1<i<k.
=1

We will approximate solutions of problem (1), (2) by means of solutions of the differ-

ence equation
8o 2™ = Fy 2] (6)

with the initial boundary condition

Hmm) — gpgf’m) on Eg., UdyE),. (7)
There exists exactly one solution uj,: E* — R of problem (6), (7). We need to know
what is the relation between the solution uy, of (6), (7) and a function vy, : Ej, — R*

satisfying the condition
dovy"™ = Filon] ™|l < a(h) o Ej (®)

and
o™ — "™ | < ag(h) on  EgnUdoE 9)
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where
o, 00: A— Ry and }llin%) ap(h) =0, }llir% a(h) = 0.

The function vy, satisfying the above relation is considered as an approximate solution
of problem (6), (7). We will need the following assumptions.

Assumption H [o]. Suppose that

1) the function o: [0,a] x Ry — R4 is continuous;
2) o(t,0) =0 fort € [0,a];

3) o is nondecreasing with respect to both variables;
4) for any ¢ > 1, the Cauchy problem

y'(t)=co(tyt), y0)=0 (10)
has the only solution y(t) = 0 for t € [0, a].
Assumption H [ gp, fr]. Suppose that

on: Ej x Dy, R*) = Myxn, and f,: E; x §(Dy, R*) — R*

and there is a function o: [0,a] x Ry — Ry satisfying Assumption H[o] and such
that
I on(tT), 2™ w) — o (K7, 2™ )| < o (tT), [lw — w]|),

a7, 2™ w) = fu (), 20 @) < o (1, [Jw — @|ln)
on E) x §(Dy,, R¥) — RF.
Theorem 1. Suppose that Assumption Hloy, f1] is satisfied and
1) he A and

1 &
——h—0|gh.ij(t,x,w)|20 on Ej xF(Dn,R*), 1<j<n, 1<i<k (11)
n )

2) uy: Ef — RF is the solution of problem (6), (7);
3) wn: Ef — R* satisfies relations (8), (9);
4) there is ¢y € Ry such that

| 5j”f(zr’m) | <co on En for 1<j<n.

Under these assumptions, there is n: A — R4 such that

g™ = o™ | <n(h) on By and limn(h) = 0. (12)
Proof. Let
Fhi E‘;L—>]%k7 Fh:(l“h.l,...,l“h.k),

To.: Eon UdoE, — RF, Ton = Tonts---Lonk)
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be functions defined by the relations

5o v,(f’m) = Fj,[on] ™™ + Fg’m) on Ej, (13)
and
rm) = ™) inm) Eo.n UOE 14
v = T T lon on Eo.p UdoEp. (14)
Then
[Py <o) on B, )
TS| < a(R) on Eg., U8yEp
and
li = li =0. 1
lim ag(h) =0, lim a(h) =0 (16)
The function wy, = up — vp, wp = (Wh.1, ..., Whk), satisfies the difference functional
system
do w;(:;m) = Z Qh~ij(t(r)7 z(m, (uh)rm] ) 5;'10;(;.;7”) +
j=1
+ Z [ Oh-ij ( t(r)’ I(m)v (uh)[r,m] ) — Oh-ij ( t(r)7 I(m)a (Uh)[r,m] ) :| 53”}(17;7”) +
j=1
+ fri (7, 2™ () oy ) = Frei (87,2 (0) oy ) — (17)
Tl 1 <i<k
Write
PO™] = (0 20 2 ) (18)
and Ay = (Ap.1,- .., Apk) where
A = Z[thj(P(r’m) [un] ) = onig (PT™[on] )| 85007 +
=1 (19)
+ fi(PC™un]) = faa( PU™ o] ) = T
From (17), it follows that the function wy, satisfies the recursive equations
(ritm) _ L~ (mten 1l | ho .
e = 52:1 wyy [ﬁJrhijh-ij(P( [un] )}+
. . (20)
1 _en 1 n rm
t3 > wy e [; - hfj@hw‘j(P( ™ [u,) )] +hoA™.
j=1
Write
Wi = wp (6™ = o)

= max{ ||w,(lj’m)H: (W), 2™ e Ef N ([—To,t(r)} xR")}, 0<r< N



Numerical methods for hyperbolic differential functional problems 35

The term Ay can be estimated as follows
A ™) < o (67w ) (A + o) +a(h)  on B, (22)

From (9), (20) and (22), we conclude that the function wy satisfies the recursive
inequality

W < w4 Eho (1), W) + hoa(h),  0<r< Ny—1, (23)
with é = (1 + ¢p) and
W' < ag(h). (24)
Consider the differential equation
1'(t) = ea(t,n(t)) + a(h) (25)
with the initial condition
1(0) = ao(h) (26)

and its solution 7. From (16) and Assumption H|g]|, it follows that
Lim () = 0.
Then, because 7y, is a convex function:
Y > 0 4 hg ot n”) + hoa(h).

Using induction we prove that

w,(f) Sng), 0<r<Ny.
This gives (12) with n(h) = n,(a) and Theorem 1 is proved. O
Now we consider difference functional problem (6), (7) where F}, is given by (5)
and the difference operators &g, § = (d1,...,9,) are calculated in the following way:
r,m ]' T N T,m
Sz = [z — 2™, (27)
ho
1 rT,m-e; ,m .
5jzgr’m) = h—[zl( mtes) _ Zl-( ’ )] if Qh.ij(t(r),x(m),z[nm]) >0, (28)
J
T,m 1 T,m T m—ey .
5jz£ m) _ h—[zz( ™) _ zz( ’ J)] if gh.ij(t(r),z(m),z[r)m}) <0, (29)
J

where 1 <17 < k.
It is easily seen that problem (6), (7) with difference operators defined by (27)—(29)
has exactly one solution uy: Ej — RF.

Now we give an estimate of the difference between the exact and approximate
solution of the above problem.
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Theorem 2. Suppose that Assumption Hoy, fr] is satisfied and
1) he A and

n
1
1—hoy ;| onij(t,z,w) >0 on Ej x F(Dp, R¥), 1<i<k; (30)
j=1""
2) up,: Ef — R* is the solution of the problem (6), (7) with 8o and § given by (27)—(29);
3) wn: Ef — R* satisfies relations (8), (9);
4) there is ¢y € Ry such that
H(Svh’)|\<co on Ep, 1<j<n.
Under these assumptions, there is n: A — R4 such that
I u(r ™ _ v}(f’m) | <n(h) on E, and }llirr%) n(h) = 0. (31)

Proof. Let 'y, Ej — R and I'g.,: Eg., UOoER, — R be the functions defined by (13)
and (14) with &y and 0 given by (28), (29). Then estimate (15) is satisfied and the
function wy = up — vy, satisfies the difference functional system

K2

wg-T:,.17m) (7 m) + hO Z on. z] P(r m) [Uh} ) 5 w(r m) +

Jj=1
+ho Y [onis(PT™un]) = onis (PC™on] )] 85003+
=1

+ ho[ fai(PC™[un]) = fri( PO [og]) ] = hol2™,
where (t(),20™) e B 1 <i<k and P"™][z] is given by (1
>0

8). Write
I ={j: 1<5<n oniy(PT™w]) 20},
fl’“ = {1, n}\f““
and suppose that Aj is defined by (19). Then we have
w;:jl ,m) — ho A(rm
r,m 1 . m
+w( ){1 —ho Z FQhw‘j(P( ) [y )+
]EI(T m)
1
+ ho Z ;gh.ij(P(r’m)[uh] )]+
jermm
1 r )
+ hg Z Fthj(P(r’m) [uh] )wz‘;m-‘r@;)_
jermm™ J
1 rom—e; r m
—ho Z ﬁ@hdj(P(T)m)[uh] )U’}(L.%m e])a (t( ), &l )) € Ej,.

rm)
jer™
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From (15), (22), (30), it follows that the function wy, defined by (21) satisfies recursive
inequality (23) and initial estimate (24) holds. Then we get the estimate

wp ™ < iy (a)

where 7y, is the solution of (25), (26). This gives (31) with (k) = n(a) and Theorem 2
is proved. O

Remark 1. The stability of difference equations generated by hyperbolic systems of
conservation laws is strictly connected with the Courant-Friedrichs-Levy (CFL) con-
dition ([3], Chapter III). Inequalities (11) and (30) can be considered as the CFL
conditions for system (6) with difference operators given by (3), (4) and (27)—(29),
respectively.

3. DIFFERENCE METHODS FOR MIXED PROBLEM

We will need the following operator Tj,: F(Dp, Rk) — C(D, Rk) . Let
S+:{€:(£17"'7£n): ij{O,l}, for Ogjgn}

Suppose that w € F(Dy, R*). For every (t,x) € D, there is (t"), (™)) € Dy, such that
(t0+D gm+D) € Dy, where m+1 = (mq +1,...,m, + 1) and ¢t <¢ < ¢+
2™ < g < 2"+t Then we put

t— ¢ 1 r— (M€ r— pm\1-¢
(Tl = 5 5 e (EZN( _wayie
0 §ESH

t— ¢ r—pme r— pm\1-¢
_ (r;m+€) (7 _ 7)
+(1 o ) > w % ) (1 % !

where

and we put 0° = 1 in the above formulas.

Lemma 3. Suppose that the function w: D — RF is of class C? and denote by wy,
the restriction of w to the set Dy,. Let C € Ry be such a constant that

H attw(t7$)||> H atij(t7x)H’ H aijzw(t7x)H < é on D
where j,l =1,...,n. Then
HThwh—wHD S é[h%"‘t‘Qhth]—F Z hjhl}.
j=1 Gl=1

The proof of lemma (3) is given in [6, Chapter 5].
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Lemma 4. Suppose that the function w = (w1, ..., wg): D — RF is of class C' and
wp, = (W1, - .., Whk) 1S the restriction of w to the set Dy,. Let cg be such a constant
that

| dew(t, z)|| < co, [| Oz, w(t, 2)[| < co for 1<j<mn, (t,z)eD (32)
Then
| Thwn —wl[p < col|hl]- (33)

Proof. Let (t,z) € D, then there is (¢!, 2(™)) € Dy, such that ("1, z(m*+D) e D
and t() <t < tO+tD - p(m) < o < 2(m+D) Tt follows that there are 6;, 6, € D, 1 <
1 < k such that

_¢(n)
wilt, ) — Thwna(t,2) = wilt, 2) — 3 [wilt,2) + Qi (B) (10D — 1)+
0
£esSy n
+ 3 0 wi(0:) (") — )|
j=1

€T — x(m) I3 €T — (L‘(m) 1-¢
()
]1/— +(r) " 5 et
- (1 B ) > {wi(t,x) = 0rwi(0;) (1" — )+

ho
§ESy n 5
+ Z axjwi(gi)(xg‘mﬂ_&j) - xj)] X
j=1

_ p(m)|¢ _ p(m) 1-¢
T T X X .
X(T) (“T) , 1<i<k

For z(™ < z < z(™m*+1D) we have
_ p(m)\¢ _ p(m) 1-¢
3 (&) (1_&) —1.
h h'
§eSy
Then from (32) we get (33). O

Assumption Hlp, f]. Suppose that functions o: E x C(D,RF) — My, and
f: E x C(D,R*) — RF are continuous and there is o: [0,a] x Ry — Ry satisfying
Assumption H [o] and such that

lo(t, z,w) = ot z, w)|| < o(t, [w —w|[p),
I £t 2, w) = f(t, 2, @) < o, lw— D)
on E x C(D, RF).

Now we consider functional differential problem (1), (2) and the difference equa-
tions

Joz{"™ = > 01 (17, 20, Ty sy ) 8,20 4 fi (47, 20, Tz ) (34)

j=1
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for 1 < i < k with initial boundary condition (7). We will prove the convergence and
give an error estimate for the method (34), (7), with the difference operators dy and
0 defined first by (3), (4) and then by (27)—(29).

3.1. 4y, 6 DEFINED BY (3), (4)
Theorem 5. Suppose that Assumption H|o, f] is satisfied and
1) he A and

L h
— 0|g”(t:rw)|>() on ExC(D,RF) for 1<j<n, 1<i<k
n

and there is M = (M, ..., M,) € R such that h’ < Mhy;
2) up: Ef — RF is a solution of problem (34), (7);
3) v: E* — RF is a solution of (1), (2) and vy, is the restriction of v to E};
4) v is of class C* and co € Ry is such a constant that

[0z;0(t, )| <co  onE, 1<j<m
5) there is ag: A — Ry such that

|| (P(T m) (r,m) || S a()(h) on EO-h U 80Eh;

_ (35)
fll,li% ap(h) = 0.
Then there is n: A — Ry such that
I u(r ™) v,(f"m) | <n(h) on En  and }llirrb n(h) = 0. (36)
Proof. We use Theorem 1 to prove the above assertion. Write
F;Lr m) _ (SOU(T m) Z 0ij t(r) (m) Th(vh) o] ) 6 ’U(T m)_
j=1 (37)

7f1( ™) Th(vh)[r,m])'

We see at once that

F;L'rzm) _ (5 v(rm 8t1}2(r’m)+

+ Z[Qij(t(r)a 27, w0 gy ) = 00 (E7 2, T (0n) g )} Sjop™+

#3201, 2 v o) [0l = 8717 ]+

+ £i (7, 2™, v oy ) = (27, 20 s Th (0R) g ) -
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It is easily seen that there is a: A — Ry such that

IT"™| < a(h)  onEj, and lim a(h)=0.

h—0

From Theorem 1, it follows that there exists a function 7: A — R satisfying (36).
This completes the proof of the theorem. O

Now we give an error estimate for method (34), (7).
Lemma 6. Suppose that

1) the functions o: ExC(D, R¥) — My, and f: ExC(D, RF) — R* are continuous
and there is L > 0 such that

I f(t,z,w) = f(t,z,w)|| < Lllw—wlp
on E x C(D, R¥);
2) assumptions 1), 2), 3), 5) of Theorem & are satisfied;
3) v: E* — RF is a solution of (1), (2) and v is of class C% on E*;
4) ¢o,C,d € Ry are such constants that
Hattv(t7x)|‘7 ||at93jv(t7$)||7 Hafrjwzv(tam)ll <C onD, 1 Sjvl <n,

loj(t,z, v <d  on E for 1<j<n

and
| Oz, v(t,2)|[| <co on B, 1<j<mn.
Then
luf"™ — o™ | <n(h)  on Ey, (38)
where
h Bye HUk)a 4 (A + BhZ) S~ 39
= 0+ + —_—
n(h) = ag(h)e (Ahg 0) L0 + o) (39)
and
1 1 < n
_ 2
A= §C[I+EZMJ. +a> M),
= = (40)

B=L(1 +cO)C[1 +23 M+ > MjMz]
j=1 4l=1

Proof. In a general case, we have estimate (38) with n(h) = np(a) and 9, : [0,a] — Ry
is a solution of (25), (26) where ¢ = (1 + ¢), o(t,p) = Lp and a: A — Ry is such a
function that

50v}(LT’m) = Fh [Uh](T’m) + F;:’m) on Ellw
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and
TS ™ | < a(h)  on By

An easy computation shows that

o — sl < T2 C (143 02

and "
||3zjv(7',m) _ 5jvl(lr,m)|| < ?OCMj for 1<j<n.
According to the above estimates and Lemma (3), there is

IT"™|| < Ahg + Bhi  on Ej,

Then " ) A )
ho + Bh? ho + Bho) L(14<o)
h A A h oy v co a.
1) = =) ( oMWt e ) €
and assertion (38) follows. O

3.2. &, § DEFINED BY (27)—(29)

Now we consider functional differential problem (1), (2) and the difference functional
problem consisting of (34) and initial boundary condition (7). This time, dy and
0 = (61,...,0,) are defined by (27)—(29).

Theorem 7. Suppose that Assumption Hlo, f] is satisfied and
1) he A and

-1
1—hozﬁ|gij(t,x,w)|20 on E x C(D,RF)

j=1""

and there is M = (My,...,M,) € R} such that k' < Mhy;

2) the function up: Ej — R is a solution of the problem (34), (7) with 69 and ¢ given
by (27)-(29);

3) v: E* — RF is a solution of (1), (2);

4) the function vl is of class C* and ¢y € Ry is such a constant that

| Owv(t, ) ||, | Opv(t, @) || < co onE, 1<j<m

5) there is ag: A — Ry such that condition (35) is satisfied.
Then there is n: A — Ry such that

™ —v™ | <n(k)  on By and limn(h)=0. (41)
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Proof. We use Theorem 2 to prove the above assertion. Let I': Ej — RF be a function
given by (37) with ¢ defined by (28), (29). From Assumption H|p, f] and Lemma (4),
it follows that there is a function a: A — R, such that

IT"™| <a(h)  on E,  and lim a(h) = 0.

Then the assumptions of Theorem 2 are satisfied and assertion (41) follows from
(31). O

Now we give an error estimate for method (34), (7) and d¢, 6 = (1, ..., d,) defined
by (27)—(29).

Lemma 8. Suppose that

1) the function o: Ex C(D, RF) — My, and f: ExC(D,RF) — RF are continuous
and there is L > 0 such that

|| Q(tamvw) - Q(t,l’,’lj})” S LH’U} - 1I)||D,

I £t 2z, w) = f(t,z,w)| < Llw = w|p
on E x C(D, RF);
2) assumptions 1), 2), 3), 5) of Theorem 7 are satisfied;
3) v: E* — RF is a solution of (1), (2) and v is of class C* on E*;
4) ¢o,C,d € Ry are such constants that

[ 0ot ), | O, ot 2], || Oy vt )| <C on D, 1< gl <m,

loj(t,z, v <d  on E for 1<j<n

and
| Op,v(t, @) <co onE, 1<j<n.

Then
[ul"™ — o™ | < p(h)  on Ey, (42)

where n(h) is given by (39) with
1 n
A=+ d;ﬂ: M|

and B is defined in (40).

The proof of Lemma 8 is similar to that of Lemma 6. Details are omitted.
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4. NUMERICAL EXAMPLE
For n = 2, we put
E=1[0,1] x [-1,1] x [-1,1],
11 11
D= |:7737:| |:7777:|a
=537 732
11 11
S NE|
2°2 2°2
Denote by @ = (x1,x2) and by z the unknown function in the variables (t,z), and
consider the differential integral equation

Oz(t,x) = — [/D z(t,x+s)ds — z(t,z) + é(l +1)| 0, 2(t, 2)+

1

+ /D 2t wt 5)ds — 42(t 5) = (1+1)| a2t 2) + (43)

1
(1+1t) + 22 + 22,

3 x
+ tx+s)ds — 22(t,x) — 62(t, =) — =
3/Doz(,ac s)ds 22(,:10) 62(,2) 5

with the initial boundary condition
2(t,x) = (1 +t)(2? + 23) for (t,z) € EgUOoE (44)
where
Ey = {O} X [*2a2] X [*272]3
B0E = [0.1] x [(1-2,2] x [-2,2) \ (1-2,2] x [-2,2]) .
The difference method for the problem is of the form
8,29 = — [I}f“”) — i) 4 s+ t(”)} 828D 4
y | o
+ [Ih(nzd) _ 42(7“,1,]) _ 6(1 + t(r)):| 52Z(r,1,g)+ (45)
rid) B (riyj 1 . i j
431 570 = 6Tnzg, g — 5 (1 +60) + (@)? + (25)?
and
20 = (L4t (@) + (@§)?)  for (17,2l 2)) € BgUBE,  (46)
where §oz("%7), §,2(713) and §52(""7) are defined by (27)-(29) and

1040 /D iz (p. ) dpds
0

with T}, defined in Section 3 and h = (hg, b1, h2).
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The function v(t,z) = (1+¢)(z3+3) is the solution of (43), (44). Let up: Ef —
R be the solution of (45), (46) and & = |up — v|. The values £(0.3,z), €(0.5, ),
€(0.7,2), (0.9, ) and up (0.3, z), un(0.5,2), up(0.7, ), up(0.9,x) are listed in Tables

(
1 and 2 for hg = 0.0005, h; = 0.005 and ho = 0.005.

Table 1
t) =0.3 t) =0.5
(E(J) y(k) Up, Eh Up, Eh

—-0.5 | =0.5 0.6507 | 7.106 10~ 0.7505 | 5.483 1074
-0.5 0.0 0.3267 | 1.732 1073 0.3774 | 2.394 1073
-0.5 0.5 0.6499 | 7.457 107° 0.7500 | 4.606 10~°
0.0 | —0.5 0.3254 | 3.673 10~* 0.3753 | 2.756 10~*
0.0 0.0 | —0.0001 | 6.930 1075 | —0.0001 | 1.421 10~*
0.0 0.5 0.3218 | 3.161 1073 0.3704 | 4.589 1073
0.5 | —0.5 0.6500 | 2.407 10— 0.7500 | 2.869 10~°
0.5 0.0 0.3227 | 2.278 1073 0.3713 | 3.699 1073
0.5 0.5 0.6433 | 6.728 1073 0.7399 | 1.006 10—2

Table 2
t) = 0.7 () =0.9
ac(j) y(k) Up, Eh Up Eh

—-0.5 | =0.5 0.8500 | 3.074 10~° 0.9492 | 7.995 104
-0.5 0.0 0.4278 | 2.799 10~3 0.4781 | 3.064 1073
-0.5 0.5 0.8501 | 5.237 10~° 0.9503 | 2.964 10~4
0.0 | =0.5 0.4250 | 2.427 107° 0.4745 | 5.080 10~*
0.0 0.0 | —0.0002 | 2.094 10~ | —0.0003 | 2.707 10~*
0.0 0.5 0.4194 | 5.636 1073 0.4686 | 6.433 1073
0.5 | —0.5 0.8500 | 1.112 1075 0.9500 | 2.752 1075
0.5 0.0 0.4200 | 4.957 1073 0.4690 | 6.004 1073
0.5 0.5 0.8375 | 1.248 1072 0.9359 | 1.412 1072
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Let €,,qe be the largest and €,,cq, the mean value of all e for a given ¢(") (Tab. 3).

Table 3

tm Emaz Emean

0.1 | 62841072 | 6.246 10~
0.2 | 1.101 1072 | 1.153 1073
0.3 | 1.4371072 | 1.602 1073
0.4 | 1.671 1072 | 1.986 1073
0.5 | 1.8431072 | 2.324 1073
0.6 | 1.983 1072 | 2.632 1073
0.7 | 21151072 | 2.926 10~3
0.8 | 23291072 | 3.369 1073
0.9 | 24161072 | 3.523 1073
1.0 | 2.667 1072 | 3.847 1073

The computation was performed on a PC computer.

REFERENCES

(1]

2]

3l

(4]

5]

(6]

7]

(8]

P. Brandi, Z. Kamont, A. Salvadori Aprozimate solutions of the mized problems for
first order partial differential-functional equations, Atti Sem. Mat. Fis. Univ. Modena
39 (1991), 277-302.

H. Bruner, The numerical treatment of ordinary and partial Volterra integro-differential
equations, Proceed. First Internat. Colloq. on Numerical Anal., Plovdiv, 17-23 August
1992 (D. Bainov, V. Covacher., eds.), 13-26, Tokyo: VSP Ultrecht, 1993.

E. Godlewski, P. Raviart, Numerical Approzimation of Hyperbolic Systems of Conser-
vation Laws, Springer, Berlin, 1996.

W. Hakbusch, Eztrapolation applied to certain discretization method solving the initial
value problem for hyperbolic differential equations, Numer. Math. 28 (1977), 121-142.

7. Kamont, K. Przadka, Difference methods for nonlinear partial differential equations
of the first order, Ann. Polon. Math. 48 (1988), 227-246.

7. Kamont, Hyperbolic functional differential inequalities and applications, Kluver Acad.
Publ., Dordrecht, Boston, London, 1989.

Z. Kamont, Finite difference approxzimations for first order partial differential functional
equations, Ukr. Math. Journ. 46 (1994), 985-996.

Z. Kamont, K. Przadka, Difference methods for first order partial differential functional
equations with initial boundary conditions, Journ. Vycisl. Mat. i Mat. Fis. 31 (1991),
1476-1488.



46 Roman Ciarski

[9] Z. Kowalski, A difference method for nonlinear partial differential equations of the first
order, Ann. Polon. Math. 18 (1960), 235-242.

[10] Z. Kowalski, On the difference method for certain hyperbolic systems of non-linear par-
tial differential equations of the first order, Bull. Acad. Polon. Sci., Ser. sci. math. astr.
phys. 16 (1968) 4, 297-310.

[11] K.M. Maghomedov, A.S. Holodov, Set-characteristics Numerical Methods, Moscow,
1988 (in Russian).

[12] T. Meis, U. Marcowitz, Numerical Solutions of Partial Differential Equations, Acad.
Press., New York, 1981.

[13] K. Przadka, Difference methods for nonlinear partial differential functional equations
of the first order, Math. Nachr. 138 (1988), 105-123.

Roman Ciarski
rciarski@math.univ.gda.pl

University of Gdarisk
Institute of Mathematics
Wit Stwosz Street 57, 80-952 Gdarisk

Received: December 19, 2005.
Revised: May 5, 2007.
Accepted: June 11, 2007.



