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DIFFERENTIAL EQUATION
OF TRANSVERSE VIBRATIONS OF A BEAM

WITH A LOCAL STROKE CHANGE OF STIFFNESS

Abstract. The aim of this paper is to derive a differential equation of transverse vibrations
of a beam with a local, stroke change of stiffness, and to solve it. The presented method is
based on the theory of distributions.
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1. INTRODUCTION

It is well known that the equation of transverse vibrations of a beam with changeable
stiffness is of the form:

∂2

∂x2

(
α(x)

∂2u

∂x2
(t, x) + µα(x)

∂3u

∂t∂x2
(t, x)

)
+ ρF

∂2u

∂t2
(t, x) = f(t, x), (1)

where µ is a constant that characterizes internal damping, ρF is mass per unit length,
a summable function f represents a distribution of external forces that act on a beam
of length l on a symmetry plane of the beam. Assuming that α ∈ C2(0, l) and f ≡ 0,
we obtain the existence and uniqueness of the solution u of C2 class in t and C4 class
in x of equation (1) with given boundary and initial conditions.

This paper is devoted to the case of a beam with a local, stroke change of stiffness.
Let us consider a joint point at x0 ∈ (0, l). In this case

α(x) =
{
α0 = EI for x ∈ [0, l] \ {x0},
0, for x = x0,

(2)
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(EI is a bending stiffness), and (1) can not be longer understood in a classical manner.
Usually, the segment (0, l) is divided into two: (0, x0), (x0, l), and two problems,
related to each other by a geometrical condition

∂3

∂t∂x2
u(t, x+

0 ) =
∂3

∂t∂x2
u(t, x−0 ) = 0 for t ≥ 0, (3)

are taken into consideration, and on account of (2), a solution u is continuous as a
function of x in (0, l).

Here we present another method. First we consider the homogeneous equation

∂2

∂x2

(
α(x)

∂2u

∂x2
+ µα(x)

∂3u

∂x2∂t

)
+ ρF

∂2u

∂t2
= 0, ρF is a constant. (4)

Separating variables in (4) as follows:

u(t, x) = T (t) ·X(x) (5)

we obtain a system of equations: for a function T

T̈ + µω2Ṫ + ω2T = 0,

and a distributional equation:

X(4) − λ4X = −σ3δx0 − σ1δ
′′
x0
, (6)

where δx0 denotes the Dirac distribution concentrated at a point x0, the left-hand-side
of (6) is understood as a regular distribution generated by a function X(4) − λ4X
with X ∈ C4((0, x0) ∪ (x0, l)) ∩ C0(0, l) and such that X ′′(x+

0 ) = X ′′(x−0 ) = 0, and
λ4 = ω2ρF

EI , σ1 = X ′(x+
0 )−X ′(x−0 ), σ3 = X(3)(x+

0 )−X(3)(x−0 ), ω is a constant.
In consequence, we obtain a new form of (1), namely,

α0
∂4u

∂x4
+ µα0

∂5u

∂t∂x4
+ ρF

∂2u

∂t2
+
α0

ω2

(
∂2u(t, x+

0 )
∂t∂x

− ∂2u(t, x−0 )
∂t∂x

)
δ′′x0

+

+
α0

ω2

(
∂4u(t, x+

0 )
∂t∂x3

− ∂4u(t, x−0 )
∂t∂x3

)
δx0 = f(t, x).

(7)

Next we formulate an eigenproblem of boundary-value problem corresponding to
(6) and derive orthogonality condition. Finally we consider a boundary-initial problem
corresponding to (7).

The idea of an analytic description of a joint point was presented in [2]. In [3], a
differential equation of transverse vibrations of a beam with a local, stroke change of
stiffness was derived, based on the sequential definition of a distribution.

2. PRELIMINARIES

For the convenience of the reader, we recall some basic ideas from the theory of
distributions. Let Ω ⊂ R be an open set. We introduce the following notations, for
more details see [4, 5]. Let D(Ω) denote the space of test functions,

D(Ω) := {ϕ ∈ C∞(Ω) : suppϕ := {ϕ 6= 0} is compact in Ω}
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and D′(Ω) the space of distributions, i.e., the space of all linear continuous functionals
defined on D(Ω).

A locally summable function u : Ω → R induces the functional

[u] : D(Ω) 3 ϕ 7→
∫

Ω

ϕ(x)u(x)dx ∈ R.

Obviously, [u] ∈ D′(Ω) and is called a regular distribution.
Let T ∈ D′(Ω), k ∈ N. The k-th derivative of the distribution T is given by the

formula:
T (k)(ϕ) := (−1)kT (ϕ(k)) for all ϕ ∈ D(Ω).

Observe that for smooth functions

[u](k) = [u(k)] for all k ∈ N.

On the other hand, if u is of class Ck in the set R \ {a}, then

[u](k) = [u(k)] +
k−1∑
j=0

σk−j−1δ
(j)
a , (8)

where σm = lim
x→a+

u(m)(x)− lim
x→a−

u(m)(x) is the jump of the m-th derivative of u at

the point a. As usual, δa denotes the Dirac distribution concentrated at the point a

δa : D(Ω) 3 ϕ 7→ ϕ(a) ∈ R.

Let T ∈ D′(Ω). The least N ∈ N such that the restriction T|DK(Ω) is
pN–continuous for each compact K ⊂ Ω is called the order of the distribution T .
Here

DK(Ω) := {u ∈ C∞(Ω) : supp u ⊂ K},

pN (u) := sup
x∈Ω

sup
s≤N

|Dsu(x)|.

Remind that the Dirac distribution has order zero. Similarly, a regular distribution
has order zero.

Let T ∈ D′(Ω), ψ ∈ C∞(Ω). The product ψT is defined as a following distribution:

ψT : D(Ω) 3 ϕ 7→ T (ϕψ) ∈ R.

The notion of the product of a smooth function and a distribution can be extended
to the case of a function of class Cm, whenever the order of the distribution does not
exceed m. In particular, for the Dirac distribution δa the product ψδa can be defined,
whenever ψ is continuous. In this case

ψδa = ψ(a)δa. (9)

For the same reason
ψ[u] = [ψu] (10)
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as long as ψ is continuous and u is locally summable. Similarly,

ψδ′′a = ψ′′(a)δa − 2ψ′(a)δ′a + ψ(a)δ′′a , (11)

for ψ ∈ C2(R).
Also the product Haδa makes sense, where Ha is Heaviside function:

Ha(x) =

 1 for x > a,
0 for x < a,
1
2 for x = a,

and
Haδa =

1
2
δa. (12)

3. A JOINT POINT

Let l > 0. Let us first consider homogeneous equation (4) and separate variables as
in formula (5). In a usual manner, we obtain a system of equations for functions T
and X:

T̈ + µω2Ṫ + ω2T = 0,

d2

dx2
(α(x)X ′′(x))− ρFω2X(x) = 0, (13)

with some constant ω. We consider an ideal joint point at x0 ∈ (0, l) thus, according
to (2):

α(x) =
{
α0 for x 6= x0,
0 for x = x0,

and from geometrical condition (3) we infer that

X ′′(x+
0 ) = X ′′(x−0 ) = 0. (14)

We are looking for X ∈ C0([0, l]) which is of class C4 in the intervals (0, x0), (x0, l)
and satisfies (13) in the distributional sense,

d2

dx2
(α(x)[X]′′)− ρFω2[X] = 0.

Observe that α = α0(Hx0 + H̆x0), where˘: x 7→−x. On the other hand, from differ-
ential formula (8) there follows:

[X]′′ = [X ′′] + σ1δx0 , (15)

for σ1 = X ′(x+
0 )−X ′(x−0 ). Remembering (12), it is meaningful to consider products

α(x)[X ′′], α(x)δx0 , and

α(x)[X ′′] = [α0X
′′], α(x)δx0 = α0δx0 .
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Thus
d2

dx2
(α(x)[X]′′) = α0[X(4)] + α0σ3δx0 + α0σ1δ

′′
x0
. (16)

Combining (16) and (13), we infer that

α0[X(4)]− ω2ρF [X] = −α0σ3δx0 − α0σ1δ
′′
x0
. (17)

Therefore, putting α0 = EJ , λ4 =
ω2ρF

EJ
we finally arrive to:

[X(4) − λ4X] = −σ3δx0 − σ1δ
′′
x0
.

Remark. On account of the above computations, we obtain that (1) is equivalent to
(7).
Remark. It is easy to compute that the solution of (6) is of the form

X(x) = P cosλx+Q sinλx+R chλx+ S shλx−

− σ1

2λ
(shλ(x− x0) + sinλ(x− x0))Hx0−

− σ3

2λ3
(shλ(x− x0)− sinλ(x− x0))Hx0 .

(18)

4. EIGENPROBLEM OF A BOUNDARY-INITIAL PROBLEM

Let us consider equation (4) with α of form (2) and initial conditions:

u(0, x) = ψ0(x),
∂u

∂x
(0, x) = ψ1(x). (19)

In order to get geometrical stability of a beam, boundary conditions have one of the
following forms:

u(t, 0) = u(t, l) = 0,
∂u

∂x
(t, 0) =

∂u

∂x
(t, l) = 0, (20)

u(t, 0) = u(t, l) = 0,
∂u

∂x
(t, 0) =

∂2u

∂x2
(t, l) = 0, (21)

u(t, 0) = u(t, l) = 0,
∂2u

∂x2
(t, 0) =

∂u

∂x
(t, l) = 0. (22)

We also assume that
∂3u

∂t∂x2
(t, x+

0 ) =
∂3u

∂t∂x2
(t, x−0 ) = 0. (23)

Separating variables according to (5), we obtain

T̈ + µω2Ṫ + ω2T = 0, T (0) = ψ0, T ′(0) = ψ1, (24)
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and due to the result of Section 3:

[X(4) − λ4X] = −σ3δx0 − σ1δ
′′
x0
, (25)

with one of the following conditions:

X(0) = X(l) = 0, X ′(0) = X ′(l) = 0, (26)

X(0) = X(l) = 0, X ′(0) = X ′′(l) = 0, (27)

X(0) = X(l) = 0, X ′′(0) = X ′(l) = 0, (28)

and
X ′′(x+

0 ) = X ′′(x−0 ) = 0. (29)

Remembering that the solution of (25) is of form (18), taking one of (26)–(28) and (29)
into account, we obtain a system of equation with the unknowns: P,Q,R, S, σ1, σ3.
In the matrix notation:

A · CT = 0, C = (P,Q,R, S, σ1, σ3), (30)

where A = A(λ) is 6× 6 matrix depending on λ, x0, l. Equation (30) has a non-zero
solution iff detA(λ) = 0. There is a countable number of λ’s satisfying this. Let us
set them into an increasing sequence λn (λ1 > 0). Now putting λn instead of λ in (25)
and denoting solutions of problems (24) and (25)–(29) with Tn and Xn, respectively,
we obtain the eigenproblem of boundary-initial problem (4), (19)–(23). Finally, the
solution of the problem considered can be represented as:

u(t, x) =
∞∑

n=1

Tn(t)Xn(x).

5. ORTHOGONALITY CONDITION

Now let Xi and Xj be solutions of (25) with λi and λj respectively (λi > λj). Then

[X(4)
i − λ4

iXi] + σ3iδx0 = −σ1iδ
′′
x0
, [X(4)

j − λ4
jXj ] + σ3jδx0 = −σ1jδ

′′
x0
. (31)

Functions Xi, Xj are continuous at x0 and distributions on the right-hand-side of
equations in (31) are of order zero. Moreover, note that

(σ1iXj − σ1jXi)(k)(x+
0 ) = (σ1iXj − σ1jXi)(k)(x−0 ) = (σ1iXj − σ1jXi)(k)(x0)

for k = 0, 1, 2. Thus we obtain

[XiX
(4)
j −X

(4)
i Xj ]− (λ4

j − λ4
i )[XiXj ] = (σ3iXj − σ3jXi)δx0 + (σ1iXj − σ1jXi)δ′′x0

.
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Hence, for any test function ϕ ∈ D(0, l):∫
R
(XiX

(4)
j −XjX

(4)
i )(x)ϕ(x)dx− (λ4

j − λ4
i )

∫
R
Xi(x)Xj(x)ϕ(x)dx =

= (σ3iXj(x0)− σ3jXi(x0))ϕ(x0) + (σ1iXj(x0)− σ1jXi(x0))ϕ′′(x0)+

+2(σ1iX
′
j(x

+
0 )− σ1jX

′
i(x

+
0 ))ϕ′(x0).

In particular,∫ l

0

(XiX
(4)
j −XjX

(4)
i )(x)dx− (λ4

j − λ4
i )

∫ l

0

Xi(x)Xj(x)dx =

= (σ3iXj(x0)− σ3jXi(x0)).

Next, integrating the first integral by parts and applying conditions (29) and one of
(26)–(28), we compute

(λ4
i − λ4

j )
∫ l

0

Xi(x)Xj(x)dx = 0.

Thus ∫ l

0

Xi(x)Xj(x)dx =

{
0 for i 6= j,

κi for i = j.

6. BOUNDARY-INITIAL PROBLEM

We now turn to the case of f(x, t) 6= 0 in (1). We are looking for the solution of the
form

u(x, t) =
∞∑

n=1

Xn(x)Fn(t) (32)

where Xn is an eigenfunction corresponding to an eigenvalue λn. Then

f(x, t) =
∞∑

n=1

fn(t)Xn(x), fn(t) =
1
κn

∫ l

0

f(x, t)Xn(x)dx. (33)

Substituting (32) and (33) into (7), we can proceed as in the homogeneous case to
conclude that Fn satisfies the equation

F̈n + µω2
nḞn + ω2

n = fn.
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