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DIFFERENTIAL EQUATION
OF TRANSVERSE VIBRATIONS OF A BEAM
WITH A LOCAL STROKE CHANGE OF STIFFNESS

Abstract. The aim of this paper is to derive a differential equation of transverse vibrations
of a beam with a local, stroke change of stiffness, and to solve it. The presented method is
based on the theory of distributions.
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1. INTRODUCTION

It is well known that the equation of transverse vibrations of a beam with changeable
stiffness is of the form:
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where p is a constant that characterizes internal damping, pF' is mass per unit length,
a summable function f represents a distribution of external forces that act on a beam
of length [ on a symmetry plane of the beam. Assuming that o € C?(0,1) and f = 0,
we obtain the existence and uniqueness of the solution u of C? class in t and C* class
in = of equation (1) with given boundary and initial conditions.

This paper is devoted to the case of a beam with a local, stroke change of stiffness.
Let us consider a joint point at xg € (0,1). In this case

atw) = { g =B ez € Do ook @
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(ET is a bending stiffness), and (1) can not be longer understood in a classical manner.
Usually, the segment (0,1) is divided into two: (0,z), (zo,l), and two problems,
related to each other by a geometrical condition
3 3

arae"(70) = g
are taken into consideration, and on account of (2), a solution u is continuous as a
function of z in (0,1).

Here we present another method. First we consider the homogeneous equation

t,xg)=0 fort>0, (3)

0? 0%u Pu 0%u .
922 <a(a:)am2 + ua(x)axzat) + pFw =0, pF is a constant. (4)
Separating variables in (4) as follows:
u(t,z) =T(t) - X() (5)

we obtain a system of equations: for a function T'
T + T + w*T = 0,
and a distributional equation:

XW _MX = —030,, — 010" (6)

xo?
where d,, denotes the Dirac distribution concentrated at a point z¢, the left-hand-side
of (6) is understood as a regular distribution generated by a function X4 — \*X
with X € C*((0,20) U (z0,1)) N C°(0,1) and such that X" (z{) = X"(zy) = 0, and
= “’;—’}F, o1 =X'(zd) — X'(xg), 03 = X®(2f) — XO)(27), w is a constant.
In consequence, we obtain a new form of (1), namely,

0*u u Pu oy (Pult,zy)  Pult,zy)\ .
A0 gpr THO0GE TP e T ( dtor  oOtox ) 0o T -
ao (Q'u(t,ag)  Oult,ag) 5y = f(t,2)
w? otox3 otdx3 o e

Next we formulate an eigenproblem of boundary-value problem corresponding to
(6) and derive orthogonality condition. Finally we consider a boundary-initial problem
corresponding to (7).

The idea of an analytic description of a joint point was presented in [2]. In [3], a
differential equation of transverse vibrations of a beam with a local, stroke change of
stiffness was derived, based on the sequential definition of a distribution.

2. PRELIMINARIES

For the convenience of the reader, we recall some basic ideas from the theory of
distributions. Let £ C R be an open set. We introduce the following notations, for
more details see [4,5]. Let D(Q) denote the space of test functions,

D) :={peC>®(Q): suppy = {p # 0} is compact in Q}
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and D’'(Q) the space of distributions, i.e., the space of all linear continuous functionals
defined on D(Q).
A locally summable function w :  — R induces the functional

W] D)5 g /Q o(z)u(z)dz € R.

Obviously, [u] € D’'(2) and is called a regular distribution.
Let T € D'(Q), k € N. The k-th derivative of the distribution T is given by the
formula:

TW (p) := (=1)*T (™) for all p € D().

Observe that for smooth functions
[u]® = [u®]  for all k € N.

On the other hand, if u is of class C*¥ in the set R\ {a}, then
k—1 .
W) = @] + Y oy 169), ©)
3=0

where ¢,, = lim «(™ (z) — lim u(™ (z) is the jump of the m-th derivative of u at

the point a. As usual, §, denotes the Dirac distribution concentrated at the point a
Jo : D(Q) 5 ¢ — p(a) € R.

Let T € D'(©2). The least N € N such that the restriction Tjp, (o) is
pn—continuous for each compact K C € is called the order of the distribution T
Here

Dk (Q) :={ueC>®(Q): suppu C K},
pn(u) := sup su]% |D%u(x)|.

Remind that the Dirac distribution has order zero. Similarly, a regular distribution
has order zero.
Let T € D'(Q), v € C>=(). The product ¥T is defined as a following distribution:

YT - D(Q) 3 p— T(pyh) € R.

The notion of the product of a smooth function and a distribution can be extended
to the case of a function of class C™, whenever the order of the distribution does not
exceed m. In particular, for the Dirac distribution §, the product ¥d, can be defined,
whenever v is continuous. In this case

Yoa = 1p(a)da. 9)

For the same reason

Plu] = [Pu] (10)
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as long as 1) is continuous and w is locally summable. Similarly,
Yo =" (a)da — 2¢'(a)d0g + ¥ (a)dy, (11)
for ¢ € C*(R).

Also the product H,d, makes sense, where H, is Heaviside function:

1 forz>a,
H,(z)=< 0 forz<a,
% for x = a,
and )
Ha§a - 55(1. (12)

3. A JOINT POINT

Let I > 0. Let us first consider homogeneous equation (4) and separate variables as
in formula (5). In a usual manner, we obtain a system of equations for functions T'
and X:

T + p®T + T = 0,
2
& (@)X (@) ~ PP X () = 0, (13)
X

with some constant w. We consider an ideal joint point at xo € (0,1) thus, according
to (2):
f
o(z) = { ag  for x # xg,

0 for x = xo,

and from geometrical condition (3) we infer that
X'(ag) = X"(xq) =0. (14)

We are looking for X € C°([0,1]) which is of class C* in the intervals (0, z¢), (zo,!)
and satisfies (13) in the distributional sense,

d2
T3 ((@)[X]") = pFu?[X] = 0.

Observe that o = ag(Hy, 4+ Hy, ), where”: 2— —z. On the other hand, from differ-
ential formula (8) there follows:

(X]" = [X"] 4 0104y, (15)

for oy = X'(af

a(2)[X"], afz)

) — X'(z5 ). Remembering (12), it is meaningful to consider products
0z, and

a(z)[X"] = [ X"], a(r)dz, = @ls,-
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Thus
d2
dx?

Combining (16) and (13), we infer that

(a(2)[X]") = ao[X Y] + ago3by, + aoo1dl, . (16)
ao[X W] — w?pF[X] = —ago38,, — @010l . (17)

2
I3
Therefore, putting ag = EJ, \* = % e finally arrive to:

[X(4) _ )\4x] = —030z, — 015.;/0'

Remark. On account of the above computations, we obtain that (1) is equivalent to

(7).

Remark. It is easy to compute that the solution of (6) is of the form

X(z) = Pcos Az + @sin A\x + Rch Az 4+ Ssh Az—

01

_ ﬁ(sh Az — o) +sin Az — x0))Hyy— (18)
- %(Sh Az — @0) — sin Az — 20)) Ha, .

4. EIGENPROBLEM OF A BOUNDARY-INITIAL PROBLEM

Let us consider equation (4) with « of form (2) and initial conditions:

ou

u(0, ) = (), %(OJ) = Y1(x). (19)

In order to get geometrical stability of a beam, boundary conditions have one of the
following forms:

ou ou
U(t, 0) - u(tvl) - 07 %(tvo) - %(tvl) - 07 (20)
ou 0%u
0%u ou
u(t,0) = u(t,l) =0, @(t,o) = %(t,l) =0. (22)
We also assume that )
Bu . d3u

W(tvﬂco )= W(ta zy) = 0. (23)

Separating variables according to (5), we obtain

T+ uwQT +w?T =0, T(0) =1, T'(0) =1, (24)
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and due to the result of Section 3:

[(XW - \X] = —030,, — 016" (25)

To?

with one of the following conditions:

X(0)=X()=0, X'(0)=X'(l)=0, (26)
X(0)=X(1)=0, X'(0)=X"(l)=0, (27)
X(0)=X(1)=0, X"(0)=X'(l)=0, (28)
and
X"(xd) = X"(z5) = 0. (29)

Remembering that the solution of (25) is of form (18), taking one of (26)—(28) and (29)
into account, we obtain a system of equation with the unknowns: P,Q, R, S, 01, 03.
In the matrix notation:

A'CT:Oa C:(PaQaRvsvo'170'3)7 (30)
where A = A()\) is 6 x 6 matrix depending on A, zo,!. Equation (30) has a non-zero
solution iff det A(\) = 0. There is a countable number of X’s satisfying this. Let us
set them into an increasing sequence A, (A\; > 0). Now putting A, instead of A in (25)
and denoting solutions of problems (24) and (25)—(29) with T;, and X,,, respectively,

we obtain the eigenproblem of boundary-initial problem (4), (19)-(23). Finally, the
solution of the problem considered can be represented as:

u(t,z) = Tu(t) Xn().
n=1

5. ORTHOGONALITY CONDITION
Now let X; and X, be solutions of (25) with A; and A; respectively (A\; > A;). Then
[Xz(4) — )\?Xz] + 0'37;5£0 = 7(711‘5;/0, [X](4) — /\?Xj] + U3j§r0 = 7(71]'5;/0. (31)

Functions X;, X; are continuous at xo and distributions on the right-hand-side of
equations in (31) are of order zero. Moreover, note that

(01X, — 01, X)W (@) = (01X — 01, X)W (ag) = (01X, — 01;X:) ) (o)
for k = 0,1,2. Thus we obtain

(X X§Y = XX = (0 = M)XXS] = (03X — 03 Xi) 0, + (01X — 015 X:)07,.
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Hence, for any test function ¢ € D(0,1):

[ X0 =X, x O @)plns = 0f =3 [ X)X @)l =

R

:(Ugin(Jﬂo)*Usti(SCo))@(xo)ﬂL(Uqu(xo)*Ula i(20))¢" (w0)+
+2(00 X (2]) — 013X ()¢ (o).

In particular,

l
/ (XY — XX ) (@)de — (A - A / X z)dz =

0
(031 (o) — 03;Xi(20)).

Next, integrating the first integral by parts and applying conditions (29) and one of

(26)—(28), we compute
1
Y ()X (x)dz = 0.
(=X [ K@) X (a)da =0

l 0 forij,
/ Xi(x)X;(z)dx = { o Z 7&]
0 k; fori=j.

6. BOUNDARY-INITIAL PROBLEM

Thus

We now turn to the case of f(z,t) # 0 in (1). We are looking for the solution of the

form
=Y Xu(z)Fa(t) (32)

where X, is an eigenfunction corresponding to an eigenvalue \,. Then

= an(t)Xn(x), fu(t) = E/o flz, ) X, (x)dx. (33)

n=1

Substituting (32) and (33) into (7), we can proceed as in the homogeneous case to
conclude that F, satisfies the equation

Fn + ,uwaFn + wa = fn.
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