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ASYMPTOTIC STABILITY
OF A NEUTRAL INTEGRO-DIFFERENTIAL EQUATION

Abstract. The global stability behavior of a non-autonomous neutral functional
integro-differential equation is studied. A sufficient condition for every solution of this
equation to tend to zero is given.

Keywords: asymptotic behavior, nonlinear neutral integro-differential equation.

Mathematics Subject Classification: 34K10, 34C25.

1. INTRODUCTION

The following delay equation

x′(t) + a(t)x(t− τ) = 0, t ≥ 0,

where a is a continuous function on [0,∞) and τ is a nonnegative number, is well
known in population models, and numerous its properties have been investigated. In
particular, it has been shown that if supt>0

∫ t

t−τ
a(s)ds ≤ 3/2, then the zero solution is

uniformly stable [1]. There are now several extensions and/or variations of this result.
For instance, in [2], the authors have obtained the global attractivity properties of
integro-differential equations of the form

x′ (t) = −
∫ t

t−r(t)

n∑
i=1

fi (t, x (s)) dµi (t, s) . (1)

To the best of our knowledge, however, the more general integro-differential equa-
tion with a neutral term

(x (t) + cx (t− σ))′ = −
∫ t

t−r(t)

n∑
i=1

fi (t, x (s)) dµi (t, s) , t ≥ 0, (2)
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where c ∈ (−1, 0] and σ > 0, has not been considered. Such an equation is a mean-
ingful mathematical model since the term cx′(t− σ) stands for the depletion rate of
the state variable at time t− σ.

In this note, we will study this equation under the conditions that the real valued
functions f1, . . . , fn and r are continuous, while µ1, . . . , µn are continuous with respect
to their first variables and nondecreasing with respect to their second variables. The
domain of fi is taken to be [0,∞)×R, that of r is [0,∞) and that of µi is R2. As in
[2], we additionally assume that

(H1) each fi (t, x) is odd with respect to x, xfi (t, x) > 0 and
∑n

i=1 fi(t, x) = 0 if
and only if x = 0;

(H2) r(0) ≥ σ, r (t) > 0, t − r (t) is nondecreasing in t, and t − r (t) → ∞ as
t →∞;

(H3) µi (t, t) > µi (t, t− r (t)) .

The definitions of a solution, eventually positive solution, eventually negative so-
lution, oscillatory solution and nonoscillatory solution are similar to those in [2] or
[3], and hence omitted. Our main result is the following theorem.

Theorem 1. Assume that each fi (t, x) is nondecreasing with respect to x and
|fi (t, x)| is nondecreasing with respect to |x|, and

|fi (t, x)| ≤ ai (t) |x| for t ≥ 0 and x ∈ R, (3)

where each ai is a nonnegative continuous function on [0,∞). If

µ ≡ lim sup
t→∞

∫ t

t−r(t)

n∑
i=1

ai (t) [µi (τ, τ)− µi (τ, τ − r (τ))] dτ <
3
2

+ 3c, (4)

then every solution of (2) tends to a constant. If in addition, for some v 6= 0,∫ ∞

0

n∑
i=1

fi (τ, v) [µi (τ, τ)− µi (τ, τ − r (τ))] dτ = ∞, (5)

then all solutions of (2) tend to zero as t →∞.

We first remark that Theorem 2.1 in [2] is our Theorem 1 in the case of c = 0.
Furthermore, there are several other special cases that may be of interest. First,
consider the case of fi (t, x (s)) = x (s) . Then (2) becomes

(x (t) + cx (t− σ))′ = −
∫ t

t−r(t)

x (s) dµ (t, s) , (6)

where µ (t, s) =
∑n

i=1 µi (t, s) . Applying our Theorem 1, we obtain the following
corollary.
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Corollary 1. Assume that

lim sup
t→∞

∫ t

t−r(t)

[µ (τ, τ)− µ (τ, τ − r (τ))] dτ <
3
2

+ 3c. (7)

Then every solution of (6) tends to a constant as t →∞. If in addition,∫ ∞

0

[µ (τ, τ)− µ (τ, τ − r (τ))] dτ = ∞, (8)

then every solution of (6) tends to zero as t →∞.

The special case of c = 0 in (6) was investigated in Haddock and Kuang [3]. Our
Corollary 1 extends and improves their corresponding results.

Next, consider the special case

(x (t) + cx (t− σ))′ = −
n∑

i=0

ai (t) x (t− ri (t)) , (9)

where each ai is nonnegative and continuous on [0,∞), and, r0 (t) = 0 and 0 < ri (t) <
ri+1 (t) ≤ r (t) for t ≥ 0 and i = 1, 2, . . . , n− 1.

Corollary 2. Assume that

lim sup
t→∞

n∑
i=0

∫ t

t−r(t)

ai (s) ds <
3
2

+ 3c. (10)

Then every solution of (9) tends to a constant as t →∞. If, in addition,∫ ∞

0

n∑
i=0

ai (t) dt = ∞, (11)

then every solution of (9) tends to zero as t →∞.

The special case of c = 0 of (9) was investigated in [3]. Our Corollary 2 extends
the corresponding results in [3].

2. PROOF

The proof of our main result will be follow easily from the following lemmas.

Lemma 1. Let x (t) be a nonoscillatory solution of (2) and u (t) = x(t) + cx(t− σ).
Then the limit

lim
t→∞

u (t) = b (12)

exists. Furthermore, if x (t) is eventually positive, then b > 0, while if x (t) is eventu-
ally negative, then b ≤ 0.
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Proof. We may assume that x (t) is an eventually positive solution of (2), since the
other case can be proved similarly. Then in view of (2), we see that u′ (t) ≤ 0
eventually. Thus limt→∞ u (t) = b ∈ R or limt→∞ u(t) = −∞. If limt→∞ u(t) = −∞
or b < 0, then

x (t) + cx (t− σ) < 0 (13)

eventually. We see that, for sufficiently large n,

0 < x (nσ) ≤ (−c)n
x (σ) . (14)

Thus, limn→∞ x (nσ) = 0. Since u (nσ) = x (nσ) + cx ((n− 1) σ) , we further see that
limi→∞ u (nσ) = 0. This leads us to a contradiction. Thus limt→∞ u (t) = b > 0. The
proof is complete.

Lemma 2. Let x (t) be a nonoscillatory solution of (2) and u (t) = x(t) + cx(t− σ).
Then limt→∞ x (t) = b/ (1 + c) , where b = limt→∞ u (t) .

Proof. We may assume that x (t) is an eventually positive solution of (2). We assert
that x (t) is bounded. Otherwise, there would exist an integer sequence {ti} with
ti →∞ for i →∞ such that

lim
i→∞

x (ti) = ∞

and
x (t) ≤ x (ti) , 0 < t ≤ ti.

On the other hand, there is, eventually,

u (ti) = x (ti) + cx (ti − σ) ≥ (1 + c)xti
→∞ as i →∞.

This is contradicts the assumption that limt→∞ u (t) = b. Thus x (t) is bounded.
Let lim supt→∞ x (t) = Q and lim infn→∞ x (t) = q. Then 0 ≤ q ≤ Q < ∞.

Moreover, there exist {ts} and {ts} : lims→∞ ts = ∞, lims→∞ ts = ∞ such that
lims→∞ x (ts) = Q and lims→∞ x

(
ts
)

= q. Since

b = lim
s→∞

u (ts)= lim
s→∞

(x (ts) + cx (ts − σ))≥ lim sup
s→∞

x (ts)+lim inf
s→∞

cx (ts − σ) ≥ Q+cQ,

and

b = lim
s→∞

u
(
ts
)
= lim

s→∞

(
x
(
ts
)

+ cx
(
ts − σ

))
≤ lim

s→∞
x
(
ts
)
+ lim

s→∞
sup cx

(
ts − σ

)
≤ q+cq,

there follows (1 + c)q ≥ (1 + c)Q. It follows that q = Q = limt→∞ x (t) . In view of
u (t) = x (t) + cx (t− σ) and limt→∞ u (t) = b, there is

lim
n→∞

x (t) =
b

1 + c
.

The proof is complete.
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Lemma 3. Every nonoscillatory solution x(t) of (2) tends to a constant. If in
addition, (3) and (5) hold, then every nonoscillatory solution of (2) tends to zero as
t →∞.

Proof. We may assume that x (t) is eventually positive. Let u (t) = x(t) + cx(t− σ).
From Lemma 1 and Lemma 2, limt→∞ u (t) = b ∈ R and b > 0 and limt→∞ x (t) =
b/ (1 + c) . If, in addition, (3) and (5) hold, we may assert that b = 0. Otherwise, if
b > 0, then by setting α = b/2 (1 + c), there exists T > 0 sufficiently large for the
following inequalities to hold:

x (t) > α and x (t− r (t)) > α for t > T. (15)

Thus,
fi (t, x (s)) = |fi (t, x (s))| > |fi (t, α)| for s > T − r (T ) . (16)

Substituting this into the right hand side of (2), we get

u′ (t) ≤
n∑

i=1

|fi (t, α)| [µi (t, t)− µi (t, t− r (t))] for t > T (17)

which, together with (5), yield limt→∞ u (t) = −∞. This contradiction shows that
b = 0 and so limt→∞ x (t) = b/ (1 + c) = 0. The proof is complete.

Lemma 4. Assume that (3) and (4) hold. Then every oscillatory solution x(t) of
(2) tends to zero as t →∞.

Proof. Our proof is modelled after that of Theorem 2.1 in [2], but there are sufficient
differences to call for a careful presentation. Let x (t) be an oscillatory solution of
(2). Let u (t) = x(t) + cx(t − σ). Note that µ ≥ 0 in (5) since ai(t) ≥ 0 and
µi(t, t) > µi(t, t− r(t)). Thus 1 + 2c > µ/3 ≥ 0 by (4).

We first prove that x (t) is bounded. Suppose the contrary holds. Then there is a
sufficiently T > σ large such that for t > T,

max
σ≤s≤t

|x (s)| = max
0≤s≤t

|x (s)| . (18)

Note that for s > 0,

x (s) = u (s)− cx (s− σ) , (19)

Thus we have for t > T,

max
0≤s≤t

|x (s)| = max
σ≤s≤t

|x (s)| ≤ max
σ≤s≤t

|u (s)| − c max
σ≤s≤t

|x (s− σ)| ≤

≤ max
0≤s≤t

|u (s)| − c max
0≤s≤t

|x (s)| .
(20)

It follows that

max
0≤s≤t

|x (s)| ≤ max0≤s≤t |u (s)|
1 + c

for t > T, (21)
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and hence u (t) is unbounded. Let ε > 0 be such that 1 < µ− 2c + ε < 3/2 + c. Also
let T1 > T such that t− r (t) > T for t > T1 and∫ t

t−r(t)

n∑
i=1

ai (t) [µi (τ, τ)− µi (τ, τ − r (τ))] dτ ≤ µ + ε, t > T1. (22)

Set

A (t) =
n∑

i=1

ai (t) [µi (t, t)− µi (t, t− r (t))] . (23)

Then ∫ t

t−r(t)

A (τ) dτ ≤ µ + ε for t > T1. (24)

Since x (t) is oscillatory, u (t) cannot be eventually monotone. Indeed, if u (t) is
monotone, then |u (t)| is eventually monotone. Since u (t) is unbounded, |u (t)| must
then be eventually increasing and limt→∞ |u (t)| = ∞ . Choose t′ > T such that
x (t′) = 0 and x (t) is not identically vanishing on [0, t′) and max0≤s≤t′ |u (s)| =
|u (t′)| . From (21), there follows

(1 + c) max
0≤s≤t′

|x (s)| ≤ max
0≤s≤t′

|u (s)| = |u (t′)| = |cx (t′ − σ)| ≤ −c max
0≤s≤t′

|x (s)| , (25)

which implies 1 + 2c ≤ 0. This is a contradiction. Thus, u (t) is not eventually
monotone. But since u(t) is unbounded, there must exist t∗ − r (t∗) > T1 such that
|u (t)| < |u (t∗)| for −r(0) ≤ t < t∗ and u′ (t∗) = 0. Without loss of generality, we may
assume that u (t∗) = x (t∗) + cx (t∗ − σ) > 0. If x (t∗) ≤ 0, then u (t∗) ≤ cx (t∗ − σ)
and using (18), we derive

u (t∗) ≤ −c max
0≤s≤t∗

|x (s)| . (26)

By (21) and (26), there is

(1 + c) max
0≤s≤t∗

|x (s)| ≤ u (t∗) ≤ −c max
0≤s≤t∗

|x (s)| , (27)

hence that 1 + 2c ≤ 0, which is impossible. Thus x (t∗) > 0. By (2),∫ t∗

t∗−r(t∗)

n∑
i=1

fi (t, x (s)) dµi (t, s) = 0,

which implies that there exists t0 ∈ (t∗ − r (t∗) , t∗) such that x (t0) = 0 and x (t) > 0
for (t0, t∗] . From (3), there follows

−fi (t, x (s)) ≤ ai (t) max
0≤s≤t∗

|x (s)| for t > 0. (28)
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Thus, from (2), we derive

u′ (t) = −
∫ t

t−r(t)

n∑
i=1

fi (t, x (s)) dµi (t, s) ≤ max
0≤s≤t∗

|x (s)|
∫ t

t−r(t)

n∑
i=1

ai (t) dµi (t, s) =

= max
0≤s≤t∗

|x (s)|
n∑

i=1

ai (t) [µi (t, t)− µi (t, t− r (t))] ≤ u (t∗)
1 + c

A (t) ,

(29)

for t∗ > t > T1. For T1 ≤ s ≤ t0, by integrating (29) from s to t0, and using (18) and
(21), we get

−x (s) ≤ u (t∗)
1 + c

∫ t0

s

A (s) ds− cx (t0 − σ) + cx (s− σ) ≤

≤ u (t∗)
1 + c

∫ t0

s

A (s) ds− 2c max
0≤v≤t0−σ

|x (v)| ≤

≤ u (t∗)
1 + c

∫ t0

s

A (s) ds− 2c max
0≤v≤t0

|x (v)| ≤

≤ u (t∗)
1 + c

∫ t0

s

A (s) ds− 2c max
0≤v≤t∗

|x (v)| ≤ u (t∗)
1 + c

[∫ t0

s

A (s) ds− 2c

]
.

(30)

On the other hand, for t0 ≤ t ≤ t∗, from (H1), (2) and (30), we conclude that

u′ (t) = −
∫ t

t−r(t)

n∑
i=1

fi (t, x (s)) dµi (t, s) =

= −
∫ t

t0

n∑
i=1

fi (t, x (s)) dµi (t, s)−
∫ t0

t−r(t)

n∑
i=1

fi (t, x (s)) dµi (t, s) ≤

≤ −
∫ t0

t−r(t)

n∑
i=1

fi (t, x (s)) dµi (t, s) ≤

≤ u (t∗)
1 + c

{∫ t0

t−r(t)

n∑
i=1

ai (t)
[∫ t0

s

A (s) ds− 2c

]
dµi (t, s)

}
=

=
u (t∗)
1 + c

{∫ t0

t−r(t)

(∫ τ

t−r(t)

n∑
i=1

ai (t) dµi (t, s)

)
A (τ) dτ−

− 2c

∫ t0

t−r(t)

n∑
i=1

ai (t) dµi (t, s)

}
≤

≤ u (t∗)
1 + c

{
n∑

i=1

ai (t) (µi (t, t)− µi (t, t− r (t)))

(∫ t0

t−r(t)

A (τ) dτ − 2c

)}
≤

≤ u (t∗)
1 + c

A (t)

{∫ t0

t−r(t)

A (τ) dτ − 2c

}
.

(31)
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Thus, for t0 ≤ t ≤ t∗, there holds

u′ (t) ≤ u (t∗)
1 + c

min

{
A (t) , A (t)

{
u (t∗)
1 + c

(∫ t0

t−r(t)

A (τ) dτ − 2c

)}}
. (32)

There are two cases to consider:

Case 1.
∫ t∗

t0
A (t) dt ≤ 1. Then by (32),

u (t∗) ≤ u (t∗)
1 + c

∫ t∗

t0

A (t)

{∫ t0

t−r(t)

A (τ) dτ − 2c

}
dt =

=
u (t∗)
1 + c

∫ t∗

t0

A (t)

{∫ t

t−r(t)

A (τ) dτ −
∫ t

t0

A (τ) dτ − 2c

}
dt ≤

≤ u (t∗)
1 + c

∫ t∗

t0

A (t)

{∫ t

t−r(t)

A (τ) dτ −
∫ t

t0

A (τ) dτ − 2c

}
dt ≤

≤ u (t∗)
1 + c

∫ t∗

t0

A (t)
{

µ− 2c + ε−
∫ t

t0

A (τ) dτ

}
dt ≤

≤ u (t∗)
1 + c

(µ− 2c + ε)
∫ t∗

t0

A (t) dt− 1
2

(∫ t∗

t0

A (t) dt

)2
 ≤

≤ u (t∗)
1 + c

(
µ− 2c + ε− 1

2

)
< u (t∗) ,

(33)

since the function g (x) = (µ− 2c + ε) x − 1
2x2 is increasing for x ≤ µ − 2c + ε and

µ− 2c + ε > 1. This yields a contradiction.
Case 2.

∫ t∗

t0
A (t) dt > 1. Then there exists t ∈ (t0, t∗) such that

∫ t∗

t

A (t) dt = 1 (34)

and

u′ (t) ≤ u (t∗)
1 + c

min

{
A (t) , A (t)

{
u (t∗)
1 + c

∫ t0

t−r(t)

A (τ) dτ − 2c

}}
.
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Thus,

u (t∗) ≤ u (t∗)
1 + c

{∫ t

t0

A (t) dt +
∫ t∗

t

A (t)

{∫ t0

t−r(t)

A (τ) dτ − 2c

}
dt

}
=

=
u (t∗)
1 + c

{∫ t∗

t

A (t)
∫ t

t0

A (τ) dτdt +
∫ t∗

t

A (t)

{∫ t0

t−r(t)

A (τ) dτ − 2c

}
dt

}
=

=
u (t∗)
1 + c

{∫ t∗

t

A (t)
∫ t

t−r(t)

A (τ) dτdt− 2c

∫ t∗

t

A (t) dt

}
≤

≤ u (t∗)
1 + c

{∫ t∗

t

A (t)
(

µ + ε−
∫ t

t

A (τ) dτ

)
dt− 2c

∫ t∗

t

A (t) dt

}
=

=
u (t∗)
1 + c

{
(µ + ε− 2c)

∫ t∗

t

A (t) dt−
∫ t∗

t

A (t)
∫ t

t

A (τ) dτdt

}
≤

≤ u (t∗)
1 + c

(µ− 2c + ε)
∫ t∗

t0

A (t) dt− 1
2

(∫ t∗

t

A (t) dt

)2
 ≤

≤ u (t∗)
1 + c

(
µ− 2c + ε− 1

2

)
< u (t∗) ,

(35)

which is again a contradiction.
Hence x (t) is bounded, and so u (t) = x(t) + cx(t − σ) is bounded. Hence if we

let λ = lim supn→∞ |x (t)| and ν = lim supn→∞ |u (t)| , then 0 ≤ λ, ν < ∞ and from
x(t) = u(t)− cx(t− σ),

λ ≤ ν

1 + c
. (36)

Next, we show that limt→∞ x(t) = 0. If suffices to show that λ = 0. Suppose to
the contrary that λ > 0; then there is S > 0 such that

|x (t− r (t))| < λ + η and |x (t− σ)| < λ + η for t > S, (37)

where η is some positive number. Since x (t) is oscillatory, we may assert that u (t)
is not eventually monotone. Otherwise, |u (t)| would eventually be monotone and
limt→∞ |u (t)| = ν. Let {t′n} be an increasing infinite sequence such that limn→∞ t′n =
∞ and x (t′n) = 0. Then

ν = lim
n→∞

|u (t′n)| = lim
n→∞

|cx (t′n − σ)| ≤ −c lim sup
n→∞

|x (t)| = −cλ. (38)

It is easy to see from (36) and (38) that 1+2c ≤ 0, which is impossible. Thus, u (t) is
not eventually monotone. Since u (t) is not eventually monotone, there is an increasing
infinite sequence {tn} such that limn→∞ tn = ∞, tn − r (tn) > S, |u (tn)| → ν as
n → ∞, and u′ (tn) = 0. Without loss of generality, we assume u (tn) > 0 for n ≥ 1.
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We may then assert that there is a tm such that x (tm) > 0. Suppose to the contrary
that x (tn) ≤ 0 for n ≥ 1. Then

u (tn) = cx (tn − σ) ≤ −c |x (tn − σ)| < −c (λ + η) for n ≥ 1. (39)

It follows that

ν ≤ −c (λ + η) . (40)

By letting η → 0, we get

ν ≤ −cλ. (41)

From (36) and (41), we see that 1 + 2c ≤ 0, which is impossible. Thus there is a tm
such that x (tm) > 0. By ( 2), there follows

∫ tm

tm−r(tm)

n∑
i=1

fi (t, x (s)) dµi (t, s) = 0, (42)

and, hence, there exists ξm ∈ (tm − r (tm) , tm) such that x (ξm) = 0 and x (t) > 0 for
t ∈ (ξm, tm] . For S ≤ s ≤ ξm, from (3) there follows

−fi (t, x (s)) ≤ ai (t) |x (s)| , t > 0, s > S. (43)

Thus, from (2), for t > S, there is

u′ (t) = −
∫ t

t−r(t)

n∑
i=1

fi (t, x (s)) dµi (t, s) ≤

≤ (λ + η)
∫ t

t−r(t)

n∑
i=1

ai (t) dµi (t, s) =

= (λ + η)
n∑

i=1

ai (t) [µi (t, t)− µi (t, t− r (t))] ≤

≤ (λ + η)A (t) .

(44)

For S ≤ s ≤ ξm, by integrating (44) from s to ξm, we get

−x (s) ≤ (λ + η)
∫ ξm

s

A (s) ds− cx (ξm − σ) + cx (s− σ) ≤

≤ (λ + η)

(∫ ξm

s

A (s) ds− 2c

)
.

(45)
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On the other hand, for ξm ≤ t ≤ tm, from (H1), (2) and (45), we conclude

u′ (t) = −
∫ t

t−r(t)

n∑
i=1

fi (t, x (s)) dµi (t, s) = −
∫ t

ξm

n∑
i=1

fi (t, x (s)) dµi (t, s)−

−
∫ ξm

t−r(t)

n∑
i=1

fi (t, x (s)) dµi (t, s) ≤ −
∫ ξm

t−r(t)

n∑
i=1

fi (t, x (s)) dµi (t, s) ≤

≤ (λ + η)

{∫ ξm

t−r(t)

n∑
i=1

ai (t)

[∫ ξm

s

A (s) ds− 2c

]
dµi (t, s)

}
=

= (λ+η)

{ ξm∫
t−r(t)

( τ∫
t−r(t)

n∑
i=1

ai (t) dµi (t, s)
)
A (τ) dτ−2c

ξm∫
t−r(t)

n∑
i=1

ai (t) dµi (t, s)

}
≤

≤ (λ + η)

{
n∑

i=1

ai (t) (µi (t, t)− µi (t, t− r (t)))

(∫ ξm

t−r(t)

A (τ) dτ − 2c

)}
≤

≤ (λ + η) A (t)

{∫ ξm

t−r(t)

A (τ) dτ − 2c

}
.

(46)

Thus, for ξm ≤ t ≤ tm,

u′ (t) ≤ (λ + η) min

{
A (t) , A (t)

{(∫ ξm

t−r(t)

A (τ) dτ − 2c

)}}
. (47)

There are two cases to consider:
Case 1.

∫ tm

ξm
A (t) dt ≤ 1. Then by (36), (47) and the fact that the function

g (x) = (µ− 2c + ε)x− 1
2x2 is increasing for x ≤ µ− 2c + ε and µ− 2c + ε > 1, there

is

u (tm) ≤ (λ + η)
∫ tm

ξm

A (t)

{∫ ξm

t−r(t)

A (τ) dτ − 2c

}
dt =

= (λ + η)
∫ tm

ξm

A (t)

{∫ t

t−r(t)

A (τ) dτ −
∫ t

ξm

A (τ) dτ − 2c

}
dt ≤

≤ (λ + η)
∫ tm

ξm

A (t)

{∫ t

t−r(t)

A (τ) dτ −
∫ t

ξm

A (τ) dτ − 2c

}
dt ≤

≤ (λ + η)
∫ tm

ξm

A (t)
{

µ− 2c + ε−
∫ t

ξm

A (τ) dτ

}
dt ≤

≤ (λ + η)

{
(µ− 2c + ε)

∫ tm

ξm

A (t) dt− 1
2

(∫ tm

ξm

A (t) dt

)2
}
≤

≤ (λ + η)
(

µ− 2c + ε− 1
2

)
≤ 1

1 + c
(ν + η (1 + c))

(
µ− 2c + ε− 1

2

)
.

(48)
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By letting m →∞ and η → 0, we get

ν ≤ ν

1 + c

(
µ− 2c + ε− 1

2

)
. (49)

Since
(
µ− 2c + ε− 1

2

)
/ (1 + c) < 1, we see that ν = 0. It follows from (36) that

λ = 0.
Case 2.

∫ tm

ξm
A (t) dt > 1. Then there exists ηm ∈ (ξm, tm) such that∫ tm

ηm

A (t) dt = 1. (50)

Thus,

u (tm) ≤ (λ + η)

{∫ ηm

ξm

A (t) dt +
∫ tm

t

A (t)

{∫ ξm

t−r(t)

A (τ) dτ − 2c

}
dt

}
=

= (λ + η)

{∫ tm

ηm

A (t)
∫ ηm

t0

A (τ) dτdt +
∫ tm

ηm

A (t)

{∫ ξm

t−r(t)

A (τ) dτ − 2c

}
dt

}
=

= (λ + η)

{∫ tm

ηm

A (t)
∫ ηm

t−r(t)

A (τ) dτdt− 2c

∫ tm

ηm

A (t) dt

}
≤

≤ (λ + η)
{∫ tm

ηm

A (t)
(

µ + ε−
∫ t

ηm

A (τ) dτ

)
dt− 2c

∫ tm

ηm

A (t) dt

}
=

= (λ + η)
{

(µ + ε− 2c)
∫ tm

ηm

A (t) dt−
∫ tm

ηm

A (t)
∫ t

ηm

A (τ) dτdt

}
≤

≤ (λ + η)

{
(µ− 2c + ε)

∫ tm

ηm

A (t) dt− 1
2

(∫ tm

ηm

A (t) dt

)2
}
≤

≤ (λ + η)
(

µ− 2c + ε− 1
2

)
≤

≤ 1
1 + c

(ν + η (1 + c))
(

µ− 2c + ε− 1
2

)
,

(51)

By letting m →∞ and η → 0, we get

ν ≤ ν

1 + c

(
µ− 2c + ε− 1

2

)
, (52)

which implies ν = 0 again. It follows from (36) that λ = 0.

In view of our previous Lemmas, Theorem 1 is true.
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