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ASYMPTOTIC STABILITY
OF A NEUTRAL INTEGRO-DIFFERENTIAL EQUATION

Abstract. The global stability behavior of a non-autonomous neutral functional
integro-differential equation is studied. A sufficient condition for every solution of this
equation to tend to zero is given.
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1. INTRODUCTION
The following delay equation
2 (t)+at)x(t—7)=0, t >0,

where a is a continuous function on [0,00) and 7 is a nonnegative number, is well
known in population models, and numerous its properties have been investigated. In
particular, it has been shown that if sup, ftt_T a(s)ds < 3/2, then the zero solution is
uniformly stable [1]. There are now several extensions and /or variations of this result.
For instance, in [2], the authors have obtained the global attractivity properties of
integro-differential equations of the form

o (1) = — / S°Fi (b (5)) dpi (1, 5) 1)

—r(t) =1

To the best of our knowledge, however, the more general integro-differential equa-
tion with a neutral term

(& (t) +ex(t — o)) = / L @) ), 120, ()
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where ¢ € (—1,0] and o > 0, has not been considered. Such an equation is a mean-
ingful mathematical model since the term cz’(t — o) stands for the depletion rate of
the state variable at time ¢ — o.

In this note, we will study this equation under the conditions that the real valued
functions fi, ..., f, and r are continuous, while p1, . .., i, are continuous with respect
to their first variables and nondecreasing with respect to their second variables. The
domain of f; is taken to be [0,00) x R, that of 7 is [0, 00) and that of y; is R?. As in
[2], we additionally assume that

(Hy) each f; (t,z) is odd with respect to z, zf; (t,2) > 0 and > ., fi(t,z) =0 if
and only if z = 0;

(Hg) 7(0) > o, r(t) > 0, t — r(¢) is nondecreasing in ¢, and t — r (t) — oo as
t — o0;

(Hz) pi (8,1) > p (¢, =7 (1))

The definitions of a solution, eventually positive solution, eventually negative so-
lution, oscillatory solution and nonoscillatory solution are similar to those in [2] or
[3], and hence omitted. Our main result is the following theorem.

Theorem 1. Assume that each f; (t,x) is nondecreasing with respect to x and
| fi (t,2)| is nondecreasing with respect to |x|, and

|fi (¢, )| < a; (t)|z| for t >0 and x € R, (3)

where each a; is a nonnegative continuous function on [0,00). If

u = limsup /t_T(t) Z a; () [pi (1, 7) = i (7,7 — 7 (7))] d7 < g + 3¢, (4)

t—o0 i—1

then every solution of (2) tends to a constant. If in addition, for some v # 0,
| S h o) = i = () = . (5)
i=1

then all solutions of (2) tend to zero as t — oo.
We first remark that Theorem 2.1 in [2] is our Theorem 1 in the case of ¢ = 0.

Furthermore, there are several other special cases that may be of interest. First,
consider the case of f; (t,z (s)) =z (s). Then (2) becomes

@O0y == [ @), (©

where p(t,s) = Y1, p; (t,8). Applying our Theorem 1, we obtain the following
corollary.
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Corollary 1. Assume that

lim sup/t w(r,7)—p(r,7—r(r)]dr < g + 3c. (7)

t=oo Ji—r(t)

Then every solution of (6) tends to a constant as t — oo. If in addition,

/Ow (r7) = p(r — ()] dr = oo, (®)

then every solution of (6) tends to zero as t — oo.

The special case of ¢ =0 in (6) was investigated in Haddock and Kuang [3]. Our
Corollary 1 extends and improves their corresponding results.

Next, consider the special case

n

(@(t) +ex(t—0)) == ai(®)x(t—ri(1), (9)

=0
where each a; is nonnegative and continuous on [0, 00), and, 79 (t) = 0 and 0 < r; (¢) <
riv1(t) <r(t)fort >0and i=1,2,...,n— 1.

Corollary 2. Assume that

n

t
lim sup Z/ a; (s)ds < g + 3c. (10)
t

t—oo T4 Jt—r(t)

Then every solution of (9) tends to a constant as t — oco. If, in addition,

/Oooiai (t) dt = oo, (11)

then every solution of (9) tends to zero as t — oo.

The special case of ¢ = 0 of (9) was investigated in [3]. Our Corollary 2 extends
the corresponding results in [3].

2. PROOF

The proof of our main result will be follow easily from the following lemmas.

Lemma 1. Let x (t) be a nonoscillatory solution of (2) and u (t) = z(t) + cx(t — o).
Then the limit

tlim u(t)="> (12)
exists. Furthermore, if x (t) is eventually positive, then b = 0, while if x (t) is eventu-
ally negative, then b < 0.
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Proof. We may assume that z (t) is an eventually positive solution of (2), since the
other case can be proved similarly. Then in view of (2), we see that v/ (¢) < 0
eventually. Thus lim; oo u (t) =b € R or limy_, o u(t) = —oo. If lims_, oo u(t) = —o0
or b < 0, then

x(t)+ex(t—o0) <0 (13)

eventually. We see that, for sufficiently large n,
0<z(no)<(—c)"z(0). (14)

Thus, lim, . « (no) = 0. Since u (no) = x (no) + cx ((n — 1) o) , we further see that
lim; o, u (no) = 0. This leads us to a contradiction. Thus lim; . u (t) =b > 0. The
proof is complete. O

Lemma 2. Let x (t) be a nonoscillatory solution of (2) and u (t) = x(t) + cx(t — o).
Then lim;_, x (t) = b/ (1 + ¢), where b = limy_, o, u () .

Proof. We may assume that z (¢) is an eventually positive solution of (2). We assert
that x () is bounded. Otherwise, there would exist an integer sequence {t;} with
t; — oo for i — oo such that

lim z (¢;) = o0

and
() <z(t;),0<t<t,.

On the other hand, there is, eventually,
u(t;)) =x(t;) +cx(t;—o) > (1+ )z, — o0 as i — oo.

This is contradicts the assumption that lim; o, u (t) = b. Thus z (¢) is bounded.

Let limsup, .z (t) = Q and liminf, ..z (¢) = ¢. Then 0 < ¢ < @ < oc.
Moreover, there exist {ts} and {ts} : lims_oots = 00,limg_,o0ts = oo such that
lims o0 2 (ts) = @ and limg_ o @ (fs) = q. Since

b=1lim u(t;)=1lim (x (ts) + czx (ts — o)) >limsup z (t;)+Hliminf cx (t; — o) > Q+cQ,

5—00 5—00 S—00
and

b=1lm u (fs) =lim (m (fs) + cx (fs — 0)) < lim z (fs)+ lim sup cx (fs — 0) < q+cgq,

§— 00 85— 00 5—00 §—00

there follows (1 + ¢)g > (1 + ¢)Q. It follows that ¢ = Q = lim;_, 2 (¢) . In view of
u(t) =ax(t) +cx(t — o) and lim;_» u (t) = b, there is

b
lim « () = T e

The proof is complete. O
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Lemma 3. Every nonoscillatory solution x(t) of (2) tends to a constant. If in
addition, (3) and (5) hold, then every nonoscillatory solution of (2) tends to zero as
t — oo.

Proof. We may assume that z (t) is eventually positive. Let u (t) = z(t) + cz(t — o).
From Lemma 1 and Lemma 2, lim; oo u (t) = b € R and b > 0 and lim;_,o 2 (t) =
b/ (1 + ¢). If, in addition, (3) and (5) hold, we may assert that b = 0. Otherwise, if
b > 0, then by setting a = b/2 (1 + ¢), there exists T' > 0 sufficiently large for the
following inequalities to hold:

z()zaand x(t—1r(t) =2 afor t >T. (15)

Thus,
fit,z (s)) = |fi (G x (s))| 2 [ fi (t,a)| for s 2T —r(T). (16)

Substituting this into the right hand side of (2), we get

o () < 1o (bl [ (8) = i (8t =7 (¢)]) for t > T (17)

i=1
which, together with (5), yield lim; ,o, u () = —oo. This contradiction shows that
b =0 and so lim;_,oc = (t) = b/ (1 4+ ¢) = 0. The proof is complete. O

Lemma 4. Assume that (3) and (4) hold. Then every oscillatory solution x(t) of
(2) tends to zero as t — oo.

Proof. Our proof is modelled after that of Theorem 2.1 in [2], but there are sufficient
differences to call for a careful presentation. Let x (t) be an oscillatory solution of
(2). Let u(t) = z(t) + cx(t — o). Note that > 0 in (5) since a;(f) > 0 and
wi(t ) > pi(t,t —r(t)). Thus 1+ 2¢ > p/3 > 0 by (4).

We first prove that x (¢) is bounded. Suppose the contrary holds. Then there is a
sufficiently T > o large such that for ¢ > T,

max [z (s)] = max |z (s)]. (18)
Note that for s > 0,
z(s)=u(s)—cx(s—o), (19)
Thus we have for ¢t > T,
= < — — <
max [o (s)] = max |z (s)] < max u(s)| —c max |z (s —o)| < o0

< — .
< jax lu(s)| ¢ max, |z (s)]

It follows that

max |.T (S)‘ maXo<s<t |u (5)|

< fort > T, (21)
0<s<t 1+e¢
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and hence u (t) is unbounded. Let € > 0 be such that 1 < y—2c+¢ < 3/2 4 ¢. Also
let Ty > T such that t —r (¢) > T for t > T; and

/t_ o Zai (t) [ (7, 7) — i (7,7 — (7)) dr < p+e, t > T1. (22)
Set
= Z ai () i (6, 1) — pi (E,t — 7 ()] (23)
Then

t
/ A(r)dr <p+efor t >T. (24)
t—r(t)

Since z (t) is oscillatory, u (t) cannot be eventually monotone. Indeed, if w(t) is
monotone, then |u (¢)| is eventually monotone. Since u (¢) is unbounded, |u (¢)| must
then be eventually increasing and lim; o |u (t)] = oo . Choose ¢ > T such that
z(t') = 0 and z(¢) is not identically vanishing on [0,t') and maxg<s<y |u(s)| =
|u(t')]. From (21), there follows

(1+0) e fo (s)] < max [u () = u(t)] = |ex (¢ = )] < —c max fo(s)], (25)

which implies 1 + 2¢ < 0. This is a contradiction. Thus, «(¢) is not eventually
monotone. But since u(t) is unbounded, there must exist ¢* — 7 (¢*) > T} such that
lu(t)] < |u(t*)] for —r(0) <t < t* and v’ (t*) = 0. Without loss of generality, we may
assume that u (t*) =z (t*) + cx (t* — o) > 0. If z (¢*) < 0, then u (t*) < czx (t* — o)
and using (18), we derive

u (t ) — CO<Insa<X X (S)| . ( )
:E) (21) EIl:l (26)7 thE‘IS iS
+ max |(x(s < 1 < — nax 1 2]
( C)O<< ( )|—u( )— CO<< | ( )|’ ( )

hence that 1 + 2¢ < 0, which is impossible. Thus z (t*) > 0. By (2),

/ Zfztw )dui (1,5) = 0,
tr—r(t*)

which implies that there exists tg € (t* — 7 (¢*),t*) such that x (to) =0 and x (¢) > 0
for (to,t*]. From (3), there follows

—fi(t,x(s)) <a;(t) max |z (s)| for ¢ > 0. (28)

0<s<t*
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Thus, from (2), we derive

<
/ Zﬂ (t,z(s))du; (t,s) < OI<nSa<>%* x (s \/t 0 Za7 ) dp; (t,8)

t)zl

= e [ Y o 0) e 1) — et - )] < 2 A ),
- (29)

for t* >t > Ty. For Ty < s < tg, by integrating (29) from s to tg, and using (18) and
(21), we get

_ ()<“(t*)/toA()d —cx(to—o)+ecx(s—o) <
:cs_lJrcs s)ds—cx(tg—o0)+cr(s—0o) <
* to
§u(t)/ A(s)ds —2c¢ max |z (v)] <
14+c /g 0<v<to—0c
U(t*> to (30)
< — <
<1 [ A ds—2e max o) <
* to * to
Su(t)/ A(s)ds — 2¢ max |x()§u(t){/ A(s)ds2c}.
IT+e /g 0<v<t* 1+c |/,
On the other hand, for to < ¢ < ¢*, from (H;), (2) and (30), we conclude that
t n
W= [ it () du ) -
t—r(t) i1
t n
= [ [ 3 a9 <
to j—1 t—=r(t) ;=1
to m
<- [ St <
t—r(t) o
o u(t) /t(’ zn: (t)UtoA()d 2]d (t,s)
a; s)ds — 2¢c| du; (t,s) p =
T 14 t—r(t) ;1 s a
(31)

_u) v TN, , _
- o) { /H(t) ( /H(t)i;az () dpsi (t,5) | A(r) dr
_26/0 Zai(t)dui(t,s)}<

; ; i(tt—r ' A(r)dr —2c <
> )= i (1= (1) ( [, A0 )} <
u (t*) to
1+cA(t){/t_r(t)A(T)dT—%}.

IN
—|
+|=

*
O [~—
—

8

=

T

’;..\

~

IN
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Thus, for tg <t < t*, there holds

There are two cases to consider:

Case 1. [ A(t)dt < 1. Then by (32),

1(+tc) /tt A(t) {/ttor(t) A(r)dr — 20} dt =
= 1;:,5_2 /t:*A(t){/tir(t)A(T)dT—/t:A(T)dT—QC} dt <
1<+ﬁ*C /t:*A(t){/;(t)A(r)dr—/t:A(T) dT—ZC} dt < ”

Z(EC /t*A(t){u—20+5_/tA(T)dT}dt§

to to

IS

u(t) <

~—

IS

IN

~—

IN

t* t* 2
Sz(jc){(“_%“%)/to A(ﬂdt—é(/to A(t)dt) }g
Sqf(fc) (H—28+€—;)<u(t*),

since the function g (z) = (u—2c+¢e)z — a2

i — 2c+¢e > 1. This yields a contradiction.
Case 2. ftto A (t)dt > 1. Then there exists ¢ € (to,t*) such that

is increasing for x < p — 2c¢ + € and

[ AW di=1 (34)

and
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s
wer <3O [awas [Cao{ [* s ol -
O [ ao [awwas [Cao{[" awir-scfal -
a0 [ sz [T awab<
sj(f_*g{/tt*fut)(me—[A(ﬂdr)dt—zc/j*mt)dt}= (3)
O ez [Mawa- [T [ acaal <
_ule) {Mm)/t: swa- ([ awa) <

<

which is again a contradiction.

Hence x (t) is bounded, and so u (t) = z(t) + cz(t — o) is bounded. Hence if we
let A = limsup,,_, |z (t)| and v = limsup,, . |u (¢)|, then 0 < A\,v < oo and from
z(t) = u(t) — cx(t — o),

v

A< .
“1l+ec¢

(36)

Next, we show that lim; ., x(¢) = 0. If suffices to show that A = 0. Suppose to
the contrary that A > 0; then there is S > 0 such that

lz(t—r@) <A+nand |[x(t—0)|<A+nfor t >S5, (37)

where 7 is some positive number. Since x (t) is oscillatory, we may assert that wu (t)
is not eventually monotone. Otherwise, |u(t)| would eventually be monotone and
lim; o |u ()| = v. Let {t/,} be an increasing infinite sequence such that lim,, . t,, =
oo and z (¢/,) = 0. Then

v= lim |u(t,)| = lim |cx(t, —0)| < —climsup |z (t)| = —cA. (38)

n—oo n—oo

It is easy to see from (36) and (38) that 1+ 2¢ < 0, which is impossible. Thus, u (t) is
not eventually monotone. Since u (¢) is not eventually monotone, there is an increasing
infinite sequence {t¢,} such that lim, o t, = 00, t, — r(tn) > S, |u(t,)| — v as
n — oo, and u’ (t,) = 0. Without loss of generality, we assume u (t,) > 0 for n > 1.
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We may then assert that there is a t,, such that x (¢,,) > 0. Suppose to the contrary
that x (¢,) < 0 for n > 1. Then

u(ty) =cx(ty, —o) < —clz(t,—o)| < —c(A+mn) for n>1. (39)
It follows that
v<—c(A+n). (40)

By letting n — 0, we get
v < —ch (41)

From (36) and (41), we see that 1 4 2¢ < 0, which is impossible. Thus there is a ¢,,
such that x (t,,,) > 0. By ( 2), there follows

| S fta ) du s = o (42)

m—"(tm) i=1

and, hence, there exists &, € (tm — 7 (tm) , tm) such that x (&,,) = 0 and = (t) > 0 for
t € (&n, tm] For S < s <&, from (3) there follows

—fi(t,z(s)) <a;(t)|z(s)|, t =0,s=S. (43)

Thus, from (2), for ¢t > S, there is

n

u (t) = 7/t o2 Z fi (&2 () du; (t,8) <

<A+ / a; (t) du; (t,s) =
7, Z i (44)

r(t) =1
)‘+77 Zaz ,uz tt Mi(tat_r(t))]g

_(A+?7)A()-

For S < s <&, by integrating (44) from s to &,,, we get
5"77,
—x(s)g()\—i—n)/ A(s)ds—cx(§m —0)+cx(s—o) <
S

S()x—i-n)( ’

E’VTL

A(s)ds — 2c> .
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On the other hand, for &,, <t < t,,, from (H;), (2) and (45), we conclude

n

ul(t)/tr(t);fi(t,x()du,ts /5 Zfltx ) dpi (t,s) —

m og=1

n n

Em m
- [ Y fta ) du ) < - / S it () dps (8,5) <

—7(t) =1 —r(t) =1

{m, n
< <A+n>{/ pAC
t—r(t) ;—1

(46)
()\+77{ 7(/2% dults)A )dr— QC/Zal d,ults}g

t—r(t) t—r(t)" t—r(t)"

Em
< (A+7) {Zal — i (t,t =7 (1)) (/t (t)A(T)de(;)}g
< (A +n)A(t) {/:m(t) A(r)dr — QC} .

Thus, for &, <t <t,,

Em
u' (t) < ()\—i—n)min{A(t),A(t){(/t_ )(f)A(T)dT—QC) }} (47)

There are two cases to consider:
Case 1. ff t)dt < 1. Then by (36), (47) and the fact that the function

g@)=(u— 20—1—5) — 1% is increasing for # < py—2c+¢ and p— 2c+¢ > 1, there
is

&m

S

Al(s)ds — 201 du; (¢, s)} =

tm &m
u(tm) < (A+1n) A(t){/t A(T)dT—Qc}dt:

Em _T(t)

= (A t7) /; A(t) {/:T(t) A7) dr — /; A7) dr — 20} it <

§()\+T])/m A(t){/tr(t)A(T)dT/ A(T)dTZc}dtS )

t
<(A+m) A A(t){u—2c+£— A A(T)dT}dt<

< (/\-1—77){(u—2c+e)/:nA(t)dt—;(/th(t)dt)Q} <

1 1
< - —2) < - ~ ).
_()\Jrn)(u 2c+¢ 2>_l+c(v+n(1+c))<u 2c+¢ 2>

tm




526 Gen-giang Wang, Sui Sun Cheng

By letting m — oo and n — 0, we get

v 1
< — -2 —-—. 49
1/_1+C(u c+e 2) (49)

Since (n—2c+¢e—3)/(14+¢) < 1, we see that v = 0. It follows from (36) that
A=0.
Case 2. f;z A (t)dt > 1. Then there exists nmy, € (§m, tm) such that

/ Ay di =1, (50)

m

w(tm) < (A +1) /;mA(t)dt+/tth(t){/fm(t)A(T)dr—%}dt} _

t

— (A1) /th(t) tnmA(T)det—i— mA(t){/:m(t)A(T)dT—Qc}dt}—

tm Nm tm
/ A(t)/ A7) drdt—QC/ Al) dt} <
n t—?“(t) NMm

<O +1) /:A(t)<u+e—/;,4(r)d7)dt-2c/:A(t)dt}_ -
— L (ute—20) :"A(t)dt— :nA(t) ;A(T)drdt}é

<(A+n) (u20+s)/th(t)dt;(/LHA(t)dt)Q} <

1
< (A+n) (u—2c+6—2) =

<

(w+n(l+0) (u20+5;),

“1l+c
By letting m — oo and n — 0, we get
Z/SV(/.L—2C+€—1), (52)
1+c 2
which implies v = 0 again. It follows from (36) that A = 0. O

In view of our previous Lemmas, Theorem 1 is true.
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