Anna Andruch-Sobiło, Małgorzata Migda

FURTHER PROPERTIES OF THE RATIONAL
RECURSIVE SEQUENCE \(x_{n+1} = \frac{ax_{n-1}}{b+cx_nx_{n-1}} \)

Abstract. In this paper we consider the difference equation

\[x_{n+1} = \frac{ax_{n-1}}{b+cx_nx_{n-1}}, \quad n = 0, 1, \ldots \] (E)

with positive parameters \(a \) and \(c \), negative parameter \(b \) and nonnegative initial conditions. We investigate the asymptotic behavior of solutions of equation (E).

Keywords: difference equation, explicit formula, positive solutions, asymptotic stability.

Mathematics Subject Classification: 39A10

1. INTRODUCTION

In this paper we consider the following rational difference equation

\[x_{n+1} = \frac{ax_{n-1}}{b+cx_nx_{n-1}}, \quad n = 0, 1, \ldots \] (E)

where \(b \) is a negative real number and \(a \) and \(c \) are positive real numbers and the initial conditions \(x_{-1}, x_0 \) are nonnegative real numbers such that at least one of them is positive. Eq. (E) in the case of positive \(b \) was considered in [1]. We use the explicit formula for solutions of Eq. (E) in investigating their behavior.

There has been a lot of work concerning the asymptotic behavior of solutions of rational difference equations. Second order rational difference equations were investigated, for example, in [1–13]. This paper is motivated by the short notes [4], where the author studied the rational difference equation

\[x_{n+1} = \frac{x_{n-1}}{-1 + x_nx_{n-1}}, \quad n = 0, 1, \ldots \]
2. MAIN RESULTS

Let \(p = \frac{b}{q}, q = \frac{s}{\pi} \). Then Eq. (E) can be rewritten as

\[
x_{n+1} = \frac{x_{n-1}}{p + qx_n x_{n-1}}, \quad n = 0, 1, \ldots
\]

(E1)

The change of variables \(x_n = \frac{1}{\sqrt{q}} y_n \) reduces the above equation to

\[
y_{n+1} = \frac{y_{n-1}}{p + y_n y_{n-1}}, \quad n = 0, 1, \ldots
\]

(E2)

where \(p \) is a negative real number, the initial conditions \(y_{-1}, y_0 \) are nonnegative real numbers such that at least one of them is positive. We will also assume \(y_0 y_{-1} \neq c^n (1-p) \) for \(n = 1, 2, \ldots, p \neq -1 \) and \(y_0 y_{-1} \neq 1 \) for \(p = -1 \) (which ensures that the denominator in Eq. (E2) is not equal to zero). Hereafter, we focus our attention on \(y \) or \(y \) numbers such that at least one of them is positive. We will also assume \(\alpha \) equilibrium

Let

\[
\{y_n\} = \{0, 0, 0, \frac{y_{n-1}}{p}, 0, \frac{y_{n-1}}{p^2}, \ldots\}\text{ or } \{y_n\} = \{y_{-1}, 0, \frac{y_{n-1}}{p}, 0, \frac{y_{n-1}}{p^2}, \ldots\}.
\]

Obviously, if \(p = -1 \), these solutions are 4-periodic.

Definition 1. ([8]) For every pair of initial conditions \((x_{-1}, x_0) \in I \times I\), the difference equation

\[
x_{n+1} = f(x_n, x_{n-1}), \quad n = 0, 1, \ldots
\]

(E3)

has the unique solution \(\{x_n\}_{n=1}^\infty \), which is called a recursive sequence. An equilibrium point of (E3) is a point \(\alpha \in I \) with \(f(\alpha, \alpha) = \alpha \); it is also called a trivial solution of Eq. (E3).

Definition 2. ([13]) Let \(\alpha \) be an equilibrium point of Eq.(E3):

(i) \(\alpha \) is stable if for every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that for any initial conditions \((x_{-1}, x_0) \in I \times I\) with \(|x_{-1} - \alpha| + |x_0 - \alpha| < \delta \), the inequality \(|x_n - \alpha| < \varepsilon \) holds for \(n = 1, 2, \ldots \);

(ii) \(\alpha \) is a local attractor if there exists \(\gamma > 0 \) such that \(x_n \to \alpha \) holds for any initial conditions \((x_{-1}, x_0) \in I \times I\) with \(|x_{-1} - \alpha| + |x_0 - \alpha| < \gamma \);

(iii) \(\alpha \) is locally asymptotically stable if it is stable and is a local attractor;

(iv) \(\alpha \) is a repeller if there exists \(\gamma > 0 \) such that for each \((x_{-1}, x_0) \in I \times I\) with \(|x_{-1} - \alpha| + |x_0 - \alpha| < \gamma \), there exists \(N \) such that \(|x_N - \alpha| \geq \gamma \).

Assume \(\alpha \) is an equilibrium point of Eq. (E3). Let \(r = -\frac{\partial f(\alpha, \alpha)}{\partial x_n} \), \(s = -\frac{\partial f(\alpha, \alpha)}{\partial x_{n-1}} \). Then the linearized equation associated with Eq. (E3) about the equilibrium \(\alpha \) is

\[
z_{n+1} + rz_n + sz_{n-1} = 0.
\]

(E4)
Further properties of the rational recursive sequence $x_{n+1} = \frac{ax_n - b}{cx_n - d}$

Theorem A ([7])(Linearized stability theorem).

(i) If $|r| < 1 + s$ and $s < 1$, then α is locally asymptotically stable.

(ii) If $|r| < |1 + s|$ and $|s| > 1$ then α is a repeller.

The equilibria of Eq. (E2) are the solutions of the equation

$$\bar{y} = \frac{\bar{y}}{p + \bar{y}^2}.$$

So, equilibrium points of Eq. (E2) are $\bar{y} = 0$ and $\bar{y} = \pm \sqrt{1 - p}$. The local asymptotic behavior of the zero equilibrium of Eq. (E2) is characterized by the following result.

Theorem 1. The following statements are true:

(i) if $p \in (-\infty, -1)$, then $\bar{y} = 0$ is locally asymptotically stable;
(ii) if $p \in (-1, 0)$, then $\bar{y} = 0$ is a repeller.

Proof. For Eq. (E2), there is

$$\frac{\partial f}{\partial y_n} = -\frac{y_n^{n-1}}{(p + y_n y_{n-1})^2},$$

$$\frac{\partial f}{\partial y_{n-1}} = \frac{p}{(p + y_n y_{n-1})^2}.$$

Therefore, for $\bar{y} = 0$ we get $r = 0$, $s = -\frac{1}{p}$ and the linearized equation associated with Eq. (E2) about the equilibrium $\bar{y} = 0$ is

$$z_{n+1} - \frac{1}{p} z_{n-1} = 0.$$

(i) The result follows from Theorem A(i) and the following relations

$$|r| - (1 + s) = -1 + \frac{1}{p} < 0,$$

and

$$s = -\frac{1}{p} < 1.$$

(ii) The result follows from Theorem A(ii) and the following relations

$$|r| - |1 + s| = -\left|\frac{p - 1}{p}\right| = \frac{1-p}{p} < 0$$

and

$$-\frac{1}{p} > 1.$$

This completes the proof. \qed
It is easy to see that the method used in the proof of Theorem 1 in [1] can be used in our case too. Thus the following formula holds for all solutions of Eq. (E2) with positive initial conditions y_1, y_0 such that $y_0 y_1 \neq \frac{p^n(1-p)}{p^n-1}$ for $n = 1, 2, \ldots, p \neq -1$ and $y_0 y_1 \neq 1$ for $p = -1$.

If all parameters and initial conditions in Eq. (E) are positive, then all solutions of Eq. (E) are positive, too. It is not true in the case of negative b. In the next theorem we give sufficient conditions for every solution of Eq. (E2) to be positive.

Theorem 2. Assume that $p \in (-1, 0)$. Let \{\(y_n\)\} be a solution of Eq. (E2) with positive initial conditions y_1, y_0 such that $y_0 y_1 \neq \frac{p^n(1-p)}{p^n-1}$ for $n = 1, 2, \ldots$. If $y_0 y_1 > -p$ then \{\(y_n\)\} is positive.

Proof. Let \{\(y_n\)\} be a solution of Eq. (E2). From (1), for the subsequence \{\(y_{2n-1}\)\} there follows

\[
y_{2n-1} = \frac{y_{n-1} \prod_{k=0}^{n-1} [p^{2i} + y_0 y_{1-i} \sum_{k=0}^{2i-1} p^k]}{\prod_{k=0}^n [p^{2i+1} + y_0 y_{1-i} \sum_{k=0}^{2i+1} p^k]}.
\]

Obviously, for $p \in (-1, 0)$,

\[p^{2i} + y_0 y_{1-i} \sum_{k=0}^{2i-1} p^k > 0\]

for all $i = 0, 1, \ldots$. On the other hand, if $y_0 y_{1-i} > -p$, then

\[p^{2i+1} + y_0 y_{1-i} \sum_{k=0}^{2i} p^k > 0\] \hspace{1cm} (2)

for all $i = 0, 1, \ldots$. Therefore, all terms of the sequence \{\(y_{2n-1}\)\} are positive. For n even the proof is similar.

Remark 1. If $y_0 y_{1-i} = 1 - p$ then from (E2) we get $y_{n+1} = \frac{y_{n-1}}{p+y_0 y_{n-1}} = y_{n-1}$. Hence \{\(y_{2n}\)\} = \{\(y_0, y_0, y_0, \ldots\)\} and \{\(y_{2n-1}\)\} = \{\(y_{1}, y_{-1}, y_{-1}, \ldots\)\}.
Further properties of the rational recursive sequence \(x_{n+1} = \frac{ax_n - 1}{bx_n + px_{n-1}} \)

Theorem 3. Assume that \(p \in (-1, 0) \). Let \(\{y_n\} \) be a solution of Eq. (E2) with positive initial conditions \(y_{-1}, y_0 \) such that \(y_0 y_{-1} \neq \frac{p^{n-1} - \mu}{p^n - 1} \) for \(n = 1, 2, \ldots \). If \(-p < y_0 y_{-1} < 1 - p\) then the subsequence \(\{y_{2n}\} \) is decreasing and subsequence \(\{y_{2n-1}\} \) is increasing.

Proof. Let \(\{y_n\} \) be a solution of Eq. (E2). From (1), for the subsequence \(\{y_{2n}\} \) there follows

\[
y_{2n} = \frac{\prod_{i=0}^{n-1} [p^{2i+1} + y_0 y_{-1} \sum_{k=0}^{2i} p^k]}{\prod_{i=0}^{n-1} [p^{2i+2} + y_0 y_{-1} \sum_{k=0}^{2i+1} p^k]}
\]

Thus for \(n \geq 1 \)

\[
\frac{y_{2n+2}}{y_{2n}} = \frac{\prod_{i=0}^{n} [p^{2i+1} + y_0 y_{-1} \sum_{k=0}^{2i} p^k] \prod_{i=0}^{n-1} [p^{2i+2} + y_0 y_{-1} \sum_{k=0}^{2i+1} p^k]}{\prod_{i=0}^{n-1} [p^{2i+2} + y_0 y_{-1} \sum_{k=0}^{2i} p^k] \prod_{i=0}^{n} [p^{2i+1} + y_0 y_{-1} \sum_{k=0}^{2i} p^k]}
\]

\[
= \frac{p^{2n+1} + y_0 y_{-1} \sum_{k=0}^{2n} p^k}{p^{2n+2} + y_0 y_{-1} \sum_{k=0}^{2n+1} p^k}
\]

Since \(y_0 y_{-1} < 1 - p \), there is

\[
y_0 y_{-1} p^{2n+1} > p^{2n+1} - p^{2n+2}.
\]

Hence

\[
y_0 y_{-1} (\sum_{k=0}^{2n+1} p^k - \sum_{k=0}^{2n} p^k) > p^{2n+1} - p^{2n+2},
\]

and therefore

\[
p^{2n+1} + y_0 y_{-1} \sum_{k=0}^{2n} p^k < p^{2n+2} + y_0 y_{-1} \sum_{k=0}^{2n+1} p^k.
\]

From the above inequality, by (2) and (3) it follows that the subsequence \(\{y_{2n}\} \) is decreasing. Similarly we prove that the subsequence \(\{y_{2n-1}\} \) is increasing. This completes the proof. \(\Box \)

Theorem 4. Assume that \(p \leq -2 \). Let \(\{y_n\} \) be a solution of Eq. (E2) with positive initial conditions \(y_{-1}, y_0 \in (0, 1) \). Then the subsequences \(\{y_{4n-1}\} \) and \(\{y_{4n}\} \) are both positive and decreasing, while subsequences \(\{y_{4n+1}\} \) and \(\{y_{4n+2}\} \) are both negative and increasing.
Proof. Let \(y_1, y_0 \in (0, 1)\). Then \(y_1, y_2 \in (0, 1)\) and \(y_3, y_4 \in (-1, 0)\). By induction we can prove that \(\{y_{4n-1}\}, \{y_{4n}\} \subset (0, 1)\) and \(\{y_{4n+1}\}, \{y_{4n+2}\} \subset (-1, 0), n = 0, 1, \ldots\). Since, by (1),

\[
\frac{y_{4n+4}}{y_{4n}} = \frac{(p^{4n+4} + y_0y-1 - p^{4n+1})}{(p^{4n+2} + y_0y-1 - p^{4n+3})} < 1,
\]

we have

\[
y_{4n+4} < y_{4n}, \quad n = 0, 1, \ldots
\]

Similarly we can see that \(y_{4n+3} < y_{4n-1}\), and \(y_{4n+5} > y_{4n+1}, y_{4n+6} > y_{4n+2}\) for \(n = 0, 1, \ldots\) and the result follows.

3. NUMERICAL RESULTS

Example 1. Let \(y_1 = \frac{3}{4}, y_0 = 1\) be the initial conditions of Eq. (E2) with \(p = -\frac{1}{2}\). Then, by Theorem 2, the solution is positive.

Table 1 sets forth the values of \(y_n\) for selected small \(n\)’s.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(y)</th>
<th>(n)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>1.333333333</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0.75</td>
</tr>
<tr>
<td>3</td>
<td>2.4</td>
<td>4</td>
<td>0.6617647058</td>
</tr>
<tr>
<td>5</td>
<td>2.604255319</td>
<td>6</td>
<td>0.6262337149</td>
</tr>
<tr>
<td>7</td>
<td>2.700933010</td>
<td>8</td>
<td>0.6111095799</td>
</tr>
<tr>
<td>9</td>
<td>2.745131352</td>
<td>10</td>
<td>0.6045146869</td>
</tr>
<tr>
<td>11</td>
<td>2.765024171</td>
<td>12</td>
<td>0.6016082844</td>
</tr>
<tr>
<td>13</td>
<td>2.773915175</td>
<td>14</td>
<td>0.6003213855</td>
</tr>
<tr>
<td>15</td>
<td>2.777876608</td>
<td>16</td>
<td>0.5997503824</td>
</tr>
<tr>
<td>17</td>
<td>2.779639200</td>
<td>18</td>
<td>0.5994067911</td>
</tr>
<tr>
<td>19</td>
<td>2.780422961</td>
<td>20</td>
<td>0.5993841209</td>
</tr>
<tr>
<td>21</td>
<td>2.780771375</td>
<td>22</td>
<td>0.5993340626</td>
</tr>
<tr>
<td>23</td>
<td>2.780926241</td>
<td>24</td>
<td>0.5993118014</td>
</tr>
<tr>
<td>25</td>
<td>2.780995074</td>
<td>26</td>
<td>0.5993019123</td>
</tr>
<tr>
<td>27</td>
<td>2.781025666</td>
<td>28</td>
<td>0.5992975172</td>
</tr>
<tr>
<td>29</td>
<td>2.781039263</td>
<td>30</td>
<td>0.5992955638</td>
</tr>
</tbody>
</table>

Example 2. Let \(p = -2/3, y(1) = 4/3, y(0) = 1\). Thus the condition \(-p < y(0)y(-1) < 1 - p\) holds and by Theorem 3, the subsequence \(\{y_{2n}\}\) is decreasing and subsequence \(\{y_{2n-1}\}\) is increasing.

Table 2 sets forth the values of \(y_n\) for selected small \(n\)’s.

Example 3. Let \(p = -11, y(-1) = 0.2, y(0) = 0.5\). Then, by Theorem 4, the subsequences \(\{y_{2n-1}\}\) and \(\{y_{2n}\}\) are both positive and decreasing, while the subsequences \(\{y_{4n+1}\}\) and \(\{y_{4n+2}\}\) are both negative and increasing.
Further properties of the rational recursive sequence $x_{n+1} = \frac{ax_{n-1}}{bx_{n}x_{n-1}+c}$

Table 3 sets forth the values of y_n for selected small n’s.

<table>
<thead>
<tr>
<th>n</th>
<th>$y(n)$</th>
<th>n</th>
<th>$y(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0.2</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>0.90168183</td>
<td>4</td>
<td>0.004128759</td>
</tr>
<tr>
<td>7</td>
<td>1.3786645 $E-5$</td>
<td>8</td>
<td>3.4121976 $E-5$</td>
</tr>
<tr>
<td>11</td>
<td>1.1393922 $E-7$</td>
<td>12</td>
<td>2.8199980 $E-7$</td>
</tr>
<tr>
<td>15</td>
<td>9.4164646 $E-10$</td>
<td>16</td>
<td>2.3305769 $E-9$</td>
</tr>
<tr>
<td>19</td>
<td>7.7822021 $E-12$</td>
<td>20</td>
<td>1.9260966 $E-11$</td>
</tr>
<tr>
<td>23</td>
<td>6.4315720 $E-14$</td>
<td>24</td>
<td>1.5918154 $E-13$</td>
</tr>
<tr>
<td>27</td>
<td>5.3153487 $E-18$</td>
<td>28</td>
<td>1.3155499 $E-15$</td>
</tr>
<tr>
<td>1</td>
<td>-0.018348623</td>
<td>2</td>
<td>-0.045416666</td>
</tr>
<tr>
<td>5</td>
<td>-0.0001516531</td>
<td>6</td>
<td>-0.000375341</td>
</tr>
<tr>
<td>9</td>
<td>-1.2533314 $E-6$</td>
<td>10</td>
<td>-3.1019978 $E-6$</td>
</tr>
<tr>
<td>13</td>
<td>-1.0358111 $E-8$</td>
<td>14</td>
<td>-2.5636346 $E-8$</td>
</tr>
<tr>
<td>17</td>
<td>-8.5604233 $E-11$</td>
<td>18</td>
<td>-2.1187063 $E-10$</td>
</tr>
<tr>
<td>21</td>
<td>-7.0747929 $E-13$</td>
<td>22</td>
<td>-1.7509969 $E-12$</td>
</tr>
<tr>
<td>25</td>
<td>-5.8468386 $E-15$</td>
<td>26</td>
<td>-1.4471049 $E-14$</td>
</tr>
<tr>
<td>29</td>
<td>-4.8321352 $E-17$</td>
<td>30</td>
<td>-1.1959544 $E-16$</td>
</tr>
</tbody>
</table>

REFERENCES

[1] A. Andruch-Sobiło, M. Migda, On the rational recursive sequence $x_{n+1} = \frac{ax_{n-1}}{bx_{n}x_{n-1}}$, (submitted).

[2] C. Cinar, On the positive solutions of the difference equation $x_{n+1} = \frac{x_{n-1}}{1+x_{n}x_{n-1}}$, Appl. Math. and Comp. 150 (2004), 21–24.

[3] C. Cinar, On the positive solutions of the difference equation $x_{n+1} = \frac{ax_{n-1}}{1+bx_{n}x_{n-1}}$, Appl. Math. and Comp. 156 (2004), 587–590.

[4] C. Cinar, On the positive solutions of the difference equation $x_{n+1} = \frac{ax_{n-1}}{1+bx_{n}x_{n-1}}$, Appl. Math. and Comp. 158 (2004), 813–816.

[5] D.C. Chang, S. Stević, On the recursive sequence $x_{n+1} = \alpha + \frac{x_{n-1}}{1+g(x_n)}$, Appl. Anal. 82 (2003), 145–156.

Anna Andruch-Sobiło
andruch@math.put.poznan.pl

Poznań University of Technology
Institute of Mathematics
Piotrowo 3A, 60-965 Poznań, Poland

Małgorzata Migda
mmigda@math.put.poznan.pl

Poznań University of Technology
Institute of Mathematics
Piotrowo 3A, 60-965 Poznań, Poland

Received: September 23, 2005.