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APPLICATION OF GREEN’S OPERATOR
TO QUADRATIC VARIATIONAL PROBLEMS

Abstract. We use Green’s function of a suitable boundary value problem to convert the
variational problem with quadratic functional and linear constraints to the equivalent un-
constrained extremal problem in some subspace of the space L2 of quadratically summable
functions. We get the neccessary and sufficient criterion for unique solvability of the varia-
tional problem in terms of the spectrum of some integral Hilbert–Schmidt operator in L2

with symmetric kernel. The numerical technique is proposed to estimate this criterion. The
results are demonstrated on examples: 1) a variational problem with deviating argument,
and 2) the problem of the critical force for the vertical pillar with additional support point
(the qualities of the pillar may vary discontinuously along the pillar’s axis).
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In applications we frequently have quadratic variational problems of the following
type:

I(x) def
=

b∫

a

1

2

[
(ψx(n))(t)

]2
+

1

2

m∑

j=1

(T1jx)(t)(T2jx)(t) + (T0x)(t) dt→ inf,

ℓix = αi, i = 1, . . . , N, N ≥ n,

(1)

where ℓi are linearly independent linear functionals, ψ : L2 → L2 is a self-adjoint
invertible operator, Tij are operators acting to the space L2. The highest order
derivative appears squared in one term of the integrand only, namely, 12

[
(ψx(n))(t)

]2
;

other products may contain n-th derivative in at most one of the multipliers.
In such a case, it is natural to consider problem (1) in the Sobolev space Hn

of functions x : [a, b] → R. The operators T1j : Hn−1 → L2 and T2j : Hn → L2,
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i = 1, . . . ,m, T0 : Hn → L1 are assumed to be continuous linear operators. Since the
operators T1j are defined on the space Hn−1, expressions (T1jx)(t) do not contain
the highest order derivative. We exploit this restriction in Lemma 1 below and its
consequences.
For our purposes, it is most convenient to represent Hn (n > 1) as the space of

functions x : [a, b] → R such that

x(t) =
n−1∑

i=0

(t− a)i

i!
x(i)(a) +

t∫

a

(t− s)n−1

(n− 1)!
x(n)(s) ds (2)

and x(n) ∈ L2 (see [6]). So the correspondence

x↔
(
x(a), x′(a), . . . , x(n−1)(a); x(n)(·)

)
(3)

is the isomorphism Hn ≃ Rn×L2, which is isometric if we put ‖x‖ =
n−1∑
i=0

∣∣x(i)(a)
∣∣+

∥∥x(n)
∥∥
L2
. One can check that this norm is equivalent to the usually considered one,

generated by the scalar product (y, z) =
n∑
i=0

∫ b
a
y(i)(t)z(i)(t) dt.

We use the notation H0 = L2.
To study and solve problem (1), we convert it to some unconstrained extremal

problem in a subspace of L2.

1. ONE PROPERTY OF GREEN’S OPERATOR

Using a part of linear constraints as boundary value conditions, we construct a
problem

x(n) = z, x ∈ L2,

ℓix = αi, i = 1, . . . , n.
(4)

Hereinafter we assume that this problem has a unique solution x ∈ Hn for
every (z, α) ∈ L2 × Rn. Then, according to the Banach inverse operator theorem, x
continuously depends on (z, α), and we have

x = Gz +Xα,

where G : L2 → Hn and X : Rn → Hn are continuous linear operators. G is Green’s
operator for problem (4). It is integral one [3, p. 79] with the kernel that we denote
as G(t, s).
We shall prove that G is the integral Hilbert–Schmidt operator, i.e., it has a

quadratically summable kernel.
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Lemma 1. Let T : Hn−1 → L2 be a continuous linear operator and G : L2 → Hn

Green’s operator for problem (4). Then TG : L2 → L2 is an integral Hilbert–Schmidt
operator with the kernel

(t, s) 7→ (Tgs)(t), (5)

where gs(t) = G(t, s).

Remark 1. The analogous lemma for T : L2 → L2 and arbitrary integral Hilbert–
Schmidt operator G is proved in [5]. Using adjoints, one can demonstrate that, under
the assumptions of [5], the operator GT : spL → L2 is an integral Hilbert–Schmidt
one too; its kernel is the function (t, s) 7→ (T ∗gt)(s), where gt(s) = G(t, s).

Proof. If x = Gz, then x satisfies the boundary value problem

x(n) = z, x ∈ L2,

ℓix = 0, i = 1, . . . , n.
(6)

Due to isomorphism (3) and Riesz’s theorem, we may rewrite the boundary value
conditions of problem (6) in the form

Ψcol
(
x(a), . . . , x(n−1)(a)

)
+

b∫

a

col
(
φ0(s), . . . , φn−1(s)

)
x(n)(s) ds = 0,

where Ψ = (ψij)
n−1
i, j=0 is a matrix of reals, φ

0, . . . , φn−1, x(n) ∈ L2. One may argue
that for unique solvability of problem (6) it is necessary that detΨ 6= 0. Accordingly,
if we change notation, the system of boundary value conditions looks as follows:

x(i)(a) =

b∫

a

φ i(s)z(s) ds, i = 0, . . . , n− 1. (7)

Now apply isomorphism (3) considered for the space Hn−1:

(Tx)(t) = x(a)τ0(t) + · · ·+ x(n−2)(a)τn−2(t) + Tn−1x
(n−1), (8)

where τ0, . . . , τn−2 ∈ L2, Tn−1 : L2 → L2 is some continuous linear operator. Let
τn−1 = Tn−11, where 1(t) ≡ 1, and (Cz)(t) =

∫ t
a
z(s) ds. Then, according to (7),

(TGz)(t) =

b∫

a

n−1∑

i=0

τi(t)φ
i(s)z(s) ds+ (Tn−1Cz)(t). (9)

As mentioned in Remark 1, the operator Tn−1C has also a quadratically sum-
mable kernel.
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To show equality (5), let first T : Hn−1 → L2 be the embedding. If we replace
n by n− 1 in equality (2) and compare it with (9), we get

(Gz)(t) = (TGz)(t) =

=

b∫

a

n−1∑

i=0

ψi(t)φ
i(s)z(s) ds+

t∫

a

(t− s)n−2

(n− 2)!

s∫

a

z(θ) dθ

=

b∫

a

n−1∑

i=0

ψi(t)φ
i(s)z(s) ds+

t∫

a

(t− s)n−1

(n− 1)!
z(s) ds,

where ψi(t)
def
= (t−a)i

i! , i = 0, . . . , n− 1.
This argument is valid for n > 1; if n = 1, then the last formula obviously holds

too.
Note that the functions

gs(t) =
n−1∑

i=0

ψi(t)φ
i(s) + us(t),

us(t)
def
=

{
(t−s)n−1

(n−1)! , if t > s,

0, if t ≤ s,

belong to the space Hn−1.
Now consider the general case of the operator T : Hn−1 → L2 expressed by (8).

For ψk(t) = (t−a)k
k! we have ψ(i)

k (a) = δik, where δ
i
k is the Kronecker delta symbol,

ψ
(n−1)
k ≡ δn−1

k ; so, due to (8),

Tψk = τk, k = 0, . . . , n− 2,

Tψn−1 = Tn−11 = τn−1.

For us(·), equalities u(i)s (a) = 0 and

u(n−1)
s (t) = cs(t)

def
=

{
1, t > s,

0, t ≤ s,

are valid; then from (8) we get

(Tus)(t) = (Tn−1cs)(t).

But the right-hand side function is just the kernel of the operator Tn−1C (see
Remark 1).
Thus, due to (9), the function

(Tgs)(t) =
n−1∑

i=0

(Tψk)(t)φ
i(s) + (Tus)(t) =

n−1∑

i=0

τk(t)φ
i(s) + (Tn−1cs)(t)

is the kernel of the operator TG.
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2. FIRST STEP OF CONVERSION

It will be done following the general idea represented in [4, 3] and some later works.
The model boundary value problem

ψx(n) = z,

ℓix = αi, i = 1, . . . , n,

has the unique solution x ∈ D,

x = Gψ−1z +Xα[n], (10)

where α[n] def
= col

(
α1, . . . , α

n
)
.

So there is one-to-one correspondence

D[n]
α

def
=

{
x ∈ D : ℓix = αi, i = 1, . . . , n

}
↔ L2.

Substitution (10) converts problem (1) to the following equivalent extremal
problem in the space L2:

J (z)
def
= I(Gψ−1z +Xα[n])− I(Xα[n]) → inf,

〈li, z〉 = βi
def
= αi − ℓiXα[n], i = n+ 1, n+ 2 . . . , N.

(11)

Here li ∈ L2 are such that ℓiGψ−1z =
〈
li, z

〉
, where 〈·,·〉 denotes the usual scalar

product in the space L2.
Calculating J (z), we get

J (z) =
1

2
〈z −Kz, z〉 − 〈θ, z〉 ,

where

K = −ψ−1
m∑

j=1

[
(T2jG)∗T1jG+ (T1jG)∗T2jG

]
ψ−1,

θ =
1

2
ψ−1

m∑

j=1

[
(T2jG)∗T1j + (T1jG)∗T2j

]
Xα[n] + ψ−1

(
T0G

)∗
1.

(12)

Theorem 1. The operator K : L2 → L2 is a self-adjoint integral Hilbert–Schmidt
one.

Proof. According to Lemma 1, each operator T1iG : L2 → L2 is an integral Hilbert–
Schmidt one. So the adjoint (T1iG)∗ is too. Then we apply Remark 1 four times.
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3. SECOND STEP OF CONVERSION

Let Z0 be the linear hull of the vectors li, i = n + 1, . . . , N , and Z1 its orthogonal
complement. Denote by Pk the orthogonal projector onto Zk. So P0 is the inte-

gral operator with the degenerate kernel P (t, s) =
N∑

i=n+1

N∑
j=n+1

γij l
i(t) lj(s), where

(γij)
N
i,j=n+1 is the inverse of the Gramian matrix

(〈
li, lj

〉)N
i,j=n+1

; P1 = I − P0 is
self-adjoint Fredholm operator.
Consider the problem

P1z = z1, z1 ∈ Z1,〈
li, z

〉
= βi, i = n+ 1, n+ 2 . . . , N.

(13)

Since L2 ≃ Z1×RN−n, this problem looks like a boundary value problem. The theory
of abstract boundary value problems is developed in the book [3].
The solution of problem (13) exists uniquely:

z = z1 + z0, z0
def
=

N∑

i=n+1

N∑

j=n+1

γijβ
j li ∈ Z0

(we see that Green’s operator of such an abstract boundary value problem is just em-
bedding). This substitution converts problem (11) to the following extremal problem
without constraints in the Hilbert space Z1:

F(z1)
def
=

1

2
〈(I −P1K)z1, z1〉 − 〈P1θ −P1(I −K)z0, z1〉 → min . (14)

This problem is equivalent to (1) in the following sense. The constraint region
of points x ∈ Hn for problem (1) is in one-to-one correspondence with the subspace
Z1; the values of functionals differ by a constant; so minimum points of the problems
correspond too.
The following theorem is quite clear.

Theorem 2 ([3, 1]). Problem (14) has a minimum point ẑ1 ∈ Z1 if and only if ẑ1
satisfies the equation

(I −P1K)z1 = P1θ −P1(I −K)z0 (15)

and the operator I −P1K : Z1 → Z1 is positively definite.
In such a case, the uniqueness of a minimum point is equivalent to each of the

following conditions:

a) equation (15) has a unique solution,

b) the operator I −P1K is strictly positively definite on the subspace Z1.
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Let r+(A) be the largest positive eigenvalue of the operator A, if it exists, and 0
otherwise.

Theorem 3. For a self-adjoint completely continuous operator A in a Hilbert space,
the following statements are equivalent:

a) for any k ∈ [0, 1], the operator I − kA is invertible;

b) the operator I −A is strictly positively definite;

c) r+(A) < 1. If r+(A) = 1, then I −A is a positively definite operator.

Proof. Proof is based on the spectral theorem of Hilbert and Schmidt (see [1, theorem
3.3]).

Note that the operator P1K : Z1 → Z1 has the same nonzero spectrum that the
operator P1KP1 : L2 → L2 has. And the latter one is an integral Hilbert–Schmidt
operator with symmetric kernel. So we have to calculate r+(P1KP1).

4. A NUMERICAL METHOD

If the spectral radius r(A) is an eigenvalue, then r+(A) = r(A) > 0. To find r(A),
the following numerical technique may be used.

Let A be a self-ajoint completely continuous operator in the Hilbert space.
Choose a starting function y0 ∈ L2 and let yi = Ayi−1 for i = 1, 2, . . . . Let E be
the orthogonal complement to all eigenfunctions corresponding to the eigenvalues λj
with |λj | = r(A).

Theorem 4 ([1, Theorem 3.8]). If y0 /∈ E, then the sequence of numbers ‖yi‖
‖yi−1‖

tends to r(A).

Remark 2. The sequence has the rate of convergence of a geometric progression with
the ratio ‖A1‖

r(A) , where A1 is the restriction of the operator A to the subspace E. In
fact, the proof of the theorem is valid for any self-adjoint operator A such that either
r(A) or −r(A) is an eigenvalue and ‖A1‖ < r(A).

We may use the computer symbolic algebra to perform these iterations. Usually,
calculating, we may determine the sign of the unique eigenvalue λ1, such that |λ1| =
r(A).

If λ1 > 0, then r+(A) = r(A).

If λ1 < 0 but r+(A) > 0, then r+(A) = r(A+λI)−λ, where λ > 0 is sufficiently
large; r(A+ λI) is calculated with the described technique.
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5. PARAMETRIC PROBLEMS

Now suppose that the objective functional in the problem (1) containes a positive
parameter p:

Ip(x) =
b∫

a

1

2
[(ψx(n))(t)]2 +

p

2

m∑

j=1

(T1jx)(t)(T2jx)(t) + (T0x)(t) dt→ inf,

ℓix = αi, i = 1, . . . , N,

(16)

The unique solvability of the variational problem depends on the quadratic part of
the functional Ip only. So we assume that T0 = 0 and all αi = 0.

Problem (14) in the subspace Z1 takes the form

Fp(z1) def
=

1

2
〈(I − pP1K)z1, z1〉 → min, (17)

where the operator K is given by equality (12).

The critical value pcr of the parameter is defined as follows: pcr is the largest
value such that for all p ∈ (0, pcr) the considered extremal problems have unique
minimum points, specifically, z1 = 0 and x = 0. The following assertions are valid
for both problems (17) and (16).

Theorem 5. We have

pcr =
1

r+(P1KP1)
, (18)

where we suppose that pcr = +∞ in the case of r+(P1KP1) = 0.

If p = pcr, T0 = 0, and αi = 0 for i = 1, . . . , N , then there is a nontrivial linear
variety of minimum points.

If p > pcr, then no minimum point exists.

Proof. Equality (18) is a direct consequence of Theorems 2 and 3.

Let λ def
= r+(P1KP1) be different from zero and u be the corresponding eige-

nvector of the operator P1KP1; then u ∈ Z1 and Fp(u) = (1− pλ) ‖u‖2.
Let T0 = 0 and αi = 0, i = 1, . . . , N . If p = pcr, then pλ = 1 and for every k ∈ R

the equality Fp(ku) = (1−pλ)k2 ‖u‖2 = 0 holds. Thus, all the points ku are minimum
points for problem (17). Accordingly, problem (16) has minimum points kGu.

If p > pcr, then Fp(u) = (1 − pλ) ‖u‖2 < 0. Problem (17) and, consequently,
problem (16) have no minimum.
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6. EXAMPLE OF THE PROBLEM WITH DEVIATING ARGUMENT

We consider the problem

1

2

b∫

0

ẍ2(t)− p(t)x(h(t))x(g(t)) dt→ inf,

x(t) = φ(t), if t /∈ [0, b],

x(0) = α1, x(b) = α2.

(19)

Here p ∈ L2, p(t) ≥ 0, h and g are measurable functions, such that both the
functions

φh(t) =

{
0, if t ∈ [0, b], h(t) ∈ [0, b],

φ(h(t)), if t ∈ [0, b], h(t) /∈ [0, b],

and analogously defined φg(t) belong to the space L2. We do not suppose that desired
solution x must give a continuous extension of the function φ to the segment [0, b].
If it is required and if φ is continuous in the exterior of the interval (0, b), then one
can put α = φ(0), β = φ(b).
This problem is naturally considered in the space H2.
Define the operator Sh : H2 → L2 by the equality

(Shx)(t) =

{
x(h(t)), if h(t) ∈ [0, b],

0, if h(t) /∈ [0, b],

then x(h(t)) = (Shx)(t)+φh(t). Substituting this and eliminating the constant term
1
2

∫ b
0
p(t)φh(t)φg(t) dt, we rewrite the problem in the following form:

1

2

b∫

0

ẍ2(t)− p(t)(Shx)(t)(Sgx)(t)− p(t)
[
φh(t)(Sgx)(t) + φg(t)(Shx)(t)

]
dt→ min,

x(0) = α1, x(b) = α2.

The model problem

ẍ(t) = z(t), x(0) = x(b) = 0,

has the unique solution x ∈ H2:

x(t) = (Wz)(t) =

b∫

0

W (t, s)z(s) ds,
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where

W (t, s) = −1

b
·





s(b− t), if 0 ≤ s ≤ t ≤ b,

t(b− s), if 0 ≤ t < s ≤ b,

0 otherwise.

(20)

When it is useful, we may consider this operator as acting from L2 to L2. Then it is
a self-adjoint one, because its kernel is symmetric.
Using this, we calculate the kernel of the operator K:

K(t, s) =
1

2

b∫

0

p(θ)
[
W

(
h(θ), t

)
W

(
g(θ), s

)
+W

(
g(θ), t

)
W

(
h(θ), s

)]
dθ.

Denote

σh(t) =

{
1, if h(t) ∈ [0, b],

0, if h(t) /∈ [0, b],

then |W (h(s), t)| ≤ b
4σh(s) for all (t, s).

Obviously,

r+(K) ≤ ‖K‖ ≤ b sup
t, s∈[0, b]

|K(t, s)| ≤ b3

16

b∫

0

p(θ)σh(θ)σg(θ) dθ.

Therefore, due to Theorem 3, in order for problem (19) to have a unique minimum
point, it is sufficient that

b∫

0

p(s)σh(s)σg(s) ds <
16

b3
. (21)

In the situation considered, the projector P1 = I. Equation (15) is a Fredholm
type integral equation of second kind. The method of successive iterations converges
if (21) holds.
Now consider the problem with p = const. The critical value pcr = 1

r+(K1)
, where

K1 is the integral operator with the kernel

K1(t, s) =
1

2

b∫

0

[
W

(
h(θ), t

)
W

(
g(θ), s

)
+W

(
g(θ), t

)
W

(
h(θ), s

)]
dθ.

Example 1. Let b = 1, h(t) = g(t) = t− τ .
Then the symmetric kernel K1 takes the form

K1(t, s) =





1
6

(
ts3 + t3s+ 2ts (1− τ3)− s3 − 3t2s

)
, if 0 < s < t < 1− τ,

1
6 (1− t)

(
− s3 + s(1− 3τ2 + 2τ3)

)
, if 0 < s < 1− τ < t < 1,

1
3 (1− t)(1− s)(1− τ)3, if 1− τ < s < t < 1.
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The calculation described in Theorem 4 was performed in the class of piecewise
polynomials with rational coefficients. So the only error is made by the truncation
of iterations.
First, let τ = 0. We put y0(t) ≡ 1 and calculate yi+1 = K1yi for i ≥ 1.

Then ‖yi‖
‖yi−1‖ → r(K1) (see Theorem 4). The Table 1 demonstrates a good rate of

convergence.

Table 1

i
‖yi‖

‖yi−1‖
Estimate pcr

1 0.009242710078 108.193375267

2 0.010265894796 97.409920897

3 0.010265982241 97.409091160

4 0.010265982255 97.409091034

5 0.010265982255 97.409091034

The corresponding eigenvalue was found to be positive; so pcr = 1
r+(K1

= 1
r(K1)

≈
97.409091034. This value coincides, in all visible digits, with the value pcr = π4, which
may be obtained by classic methods of variational calculus.
There are some other values of pcr (Table 2).

Table 2

τ 0. 0.05 0.1 0.2

pcr 97.409 97.489 98.040 102.314

τ 0.3 0.4 0.5 0.6

pcr 113.839 138.069 187.378 298.151

7. THE STRESSED PILLAR WITH THREE SUPPORT POINTS

Consider the problem of the critical force for the pillar.
The vertical elastic shank is stressed by the vertical contracting force P (Fig. 1).

If P < Pcr, then the pillar is stable. If P is greater, the pillar bends. According to
the Lagrange variational principle, the shape of the stable pillar is a graph of unique
solution of the problem

IP (x) =
1

2

b∫

0

ψ2(t)ẍ2(t)− Pẋ2(t) dt→ inf,

x(0) = x(b) = 0,

x(c) = 0,

where ψ2(t) = E(t)I(t), E(t) is the Young modulus of the material and I(t) is the
geometric moment of inertia of the shank section at the level t ∈ [0, b].
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Fig. 1

We assume that ψ is measurable, ess sup
t∈[0, b]

ψ(t) <∞, and ess inf
t∈[0, b]

ψ(t) > 0.

To construct a W -substitution, consider the model boundary value problem

ψẍ = z, (z ∈ L2)

x(0) = x(b) = 0.

It has the unique solution

x(t) =

(
W

1

ψ
z

)
(t)

def
=

b∫

0

W (t, s)
1

ψ(s)
z(s) ds,

where function W is defined by (20).
Using this substitution, we get the functional JP in L2:

JP (z) = 〈z, z〉 − P

〈
d

dt
W

1

ψ
z,

d

dt
W

1

ψ
z

〉
.

By direct calculation of kernels we get
(
d
dtW

)∗ ( d
dtW

)
= −W; so

JP (z) = 〈z, z〉+ P

〈
1

ψ
W

1

ψ
z, z

〉
.

Let w(s) = W (c, s), then problem (11) in L2 for our example is the following
one:

JP (z) → min,
〈
1

ψ
w, z

〉
= 0.
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So

Pcr =

[
r+

(
−P1

1

ψ
W

1

ψ
P1

)]−1

,

where

P1z = z −
∥∥∥∥
1

ψ
w

∥∥∥∥
−2 〈

1

ψ
w, z

〉
1

ψ
w.

Example 2. Let b = 3, c = 1, and

ψ(t) =





1 for t ∈ [0, 1),

2 for t ∈ [1, 2),

1 for t ∈ [2, 3].

The numerical estimation of r+
(
−P1

1
ψW

1
ψP1

)
≈ 0.223944, obtained using

piecewise polynomials with rational coefficients, leads to the value Pcr ≈ 4.46539.
In the same way we have got approximatively an eigenfunction that represents the
shape of the pillar at the time when it loses the stability (Fig. 2).

Fig. 2

For the case of no additional support, the exact value for this pillar is obtained
in paper [2]: Pcr = arc cos2(

√
13−2
9 ) ≈ 1.936110.

Some other examples of applied problems solved by the considered method may
be found in [8, 7, 1].
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