Beata Orchel

BIPARTITE EMBEDDING OF (p, q)-TREES

Abstract. A bipartite graph $G = (L, R; E)$ where $V(G) = L \cup R$, $|L| = p$, $|R| = q$ is called a (p, q)-tree if $|E(G)| = p + q - 1$ and G has no cycles. A bipartite graph $G = (L, R; E)$ is a subgraph of a bipartite graph $H = (L', R'; E')$ if $L \subseteq L'$, $R \subseteq R'$ and $E \subseteq E'$.

In this paper we present sufficient degree conditions for a bipartite graph to contain a (p, q)-tree.

Keywords: bipartite graph, tree, embedding graph.

Mathematics Subject Classification: 05C35.

1. TERMINOLOGY

We shall use standard graph theory notation. We consider only finite, undirected graphs. All graphs will be assumed to have neither loops nor multiple edges.

Let $G = (L, R; E)$ be a bipartite graph with a partition L, R and an edge set E. That means, L and R are two disjoint sets of independent vertices of the graph G such that $L \cup R = V(G)$. We call $L = L(G)$ and $R = R(G)$ the left and right set of bipartition. Note that the graphs $G = (L, R; E)$ and $G' = (R, L; E)$ are different.

For a vertex $x \in V(G)$, $N(x, G)$ denotes the set of its neighbors in G. The degree $d(x, G)$ of the vertex x in G is the cardinality of the set $N(x, G)$.

$\Delta_L(G)$ ($\delta_L(G)$) and $\Delta_R(G)$ ($\delta_R(G)$) are maximum (minimum) vertex degree in the set $L(G)$ and $R(G)$, respectively. A vertex x of G is said to be pendant if $d(x, G) = 1$. For subsets A and B of $V(G)$, let $N(A, B; G)$ denote the set of edges $xy \in E(G)$ such that $x \in A$ and $y \in B$. $K_{p,q}$ is the complete (p,q)-bipartite graph. \bar{G} is the complement of G into $K_{p,q}$.

A bipartite graph $G = (L, R; E)$ is a subgraph of a bipartite graph $H = (L', R'; E')$ if $L \subseteq L'$, $R \subseteq R'$ and $E \subseteq E'$. If G is a subgraph of H, then we write $G \leq H$. Observe that the meaning of the word subgraph is different from the usual.
one (see [3] and [1] page 1282). For instance, the graph $K_{1,2} = (\{a\}, \{b, c\}; \{ab, ac\})$ is not a subgraph of $K_{2,1} = (\{d, e\}, \{f\}; \{df, ef\})$. We say that a bipartite graph $G = (L, R; E)$ is bipartite embeddable or simply embeddable into bipartite graph $H = (L', R'; E')$ if there is an injection f such that $f : L \cup R \rightarrow L' \cup R'$, $f(L) = L'$ and for every edge $xy \in E$, $f(x)f(y)$ is an edge of H. The function f is called the bipartite embedding (or embedding) of G into H. In other words, a bipartite graph $G = (L, R; E)$ is said to be embeddable into bipartite graph $H = (L', R'; E')$ when there exists a pair (f_1, f_2) of injective mappings $f_1 : L \rightarrow L'$ and $f_2 : R \rightarrow R'$ such that if $x \in L$ and $y \in R$ are adjacent in G, then $f_1(x)$ and $f_2(y)$ are adjacent in H (see [3]). It follows easily that G is embeddable into H if and only if G is a subgraph of H. Note that $K_{1,2}$ is not embeddable into $K_{2,1}$.

A (p,q)-bipartite graph G is called a (p,q)-tree if G is connected and $|E(G)| = p + q - 1$. Thus each (p,q)-tree is a tree and for each tree T there exist integers p and q such that T is a (p,q)-tree. If G is a (p,q)-bipartite and $|E(G)| = p + q - k$ and G has no cycles then G is called a (p,q,k)-forest. So, a $(p,q,1)$-forest is a (p,q)-tree. Let T be a (p,q)-tree and $y \in V(T)$. Let us denote by U_y the set of all $z \in N(y, T)$ such that $d(z, T) = 1$. We shall call U_y the bough with the center y. The vertex $x \in V(T)$ is called penultimate vertex if $U_x \neq \emptyset$ and $d(x, T) = |U_x| + 1$ and there is the longest path P in T such that $x \in V(P)$.

2. RESULTS

First we shall give some results concerning the subgraphs of general graphs.

In 1963, Erdős and Sós (see [5]) stated the following conjecture, which was proved by Brandt in [2].

Theorem 1. Let G be a graph with n vertices and more than

$$f(k, n) = \max \left\{ \binom{2k - 1}{2}, \binom{k - 1}{2} + (k - 1)(n - k + 1) \right\}$$

edges. Then G contains every forest with k edges and without isolated vertices as a subgraph.

The following well-known result was atributed by Chvátal to graph-theoretical folklore [4]:

Theorem 2. Suppose G is a graph with the minimum degree not less than k. Then G contains every tree with k edges.

S. Brandt in [2] proved:

Theorem 3. Suppose F is a forest with k edges and order n and G is a graph with at least n vertices. If $\delta(G) \geq k$, then F is a subgraph of G.
We shall consider bipartite embedding problem, analogous to the classical embedding problem, the first general condition for a bipartite graph to be a subgraph of another bipartite graph was given by Rado in [6] (See also [3]).

In this paper we present sufficient degree conditions for a bipartite graph to contain every \((p,q)\)-tree.

The following lemma, proved in Section 3, is an easy bipartite equivalent of Theorem 2.

Lemma A. Let \(G = (L', R'; E')\) be a \((p', q')\)-bipartite graph such that \(\delta_L(G) \geq q\) and \(\delta_R(G) \geq p\). Then every \((p,q)\)-tree \(T = (L, R; E)\) is a subgraph of \(G\).

Observe that if \(\Delta_L(T) = q\) (or \(\Delta_R(T) = p\)), then Lemma A is best possible in the sense that it cannot be improved by decreasing the minimum degree of the graph \(G\).

Hence, now we shall consider a \((p,q)\)–tree \(T\) such that \(K_{1, q}\) is not a subgraph of \(T\).

The main results are the following theorem and its obvious corollaries:

Theorem B. Let \(T = (L, R; E)\) be a \((p, q)\)-tree, \(\Delta_L(T) \leq q - 1\) and let \(G = (L', R'; E')\) be a connected \((p', q')\)-bipartite graph such that \(q' \geq q\), \(\delta_L(G) \geq q - 1\) and \(\delta_R(G) \geq p\). Then \(T\) is a subgraph of \(G\).

Note that if \(\Delta_L(T) = q - 1\) (or \(\Delta_R(T) = p\)), then Theorem B is best possible.

Let \(P_k\) be a path with \(k\) edges and let \(k\) be even, \(k \geq 4\). By Theorem 3, \(P_k\) is a subgraph of a graph \(G\) if \(\delta(G) \geq k\), but by Theorem B, \(P_k\) is a subgraph of a bipartite graph \(G'\), if \(\delta(G') \geq k/2\).

Corollary C. Let \(T = (L, R; E)\) be a \((p, q)\)-tree, \(\Delta_L(T) \leq q - 1\) and let \(G = (L', R'; E')\) be a \((p', q')\)-bipartite graph such that \(\delta_L(G) \geq q - 1\), \(\delta_R(G) \geq p\) and every connected component \(G_1\) has at least \(p\) and \(q\) vertices in \(L(G_1)\) and \(R(G_1)\), respectively. Then \(T\) is a subgraph of each component of \(G\).

Corollary D. Let \(F = (L, R; E)\) be a \((p, q, k)\)-forest, \(k \geq 2\) and let \(G = (L', R'; E')\) be a \((p', q')\)-bipartite graph such that \(q' \geq q\), \(\delta_L(G) \geq q - 1\), \(\delta_R(G) \geq p\). Then \(F\) is a subgraph of \(G\).

3. PROOFS

To prove Lemma A and Theorem B, we shall need two lemmas.

Lemma 3.1 Let \(T = (L, R; E)\) be a \((p, q)\)-tree, let \(U_y \neq \emptyset\) be a bough in \(T\) and let \(G\) be a \((p', q')\)-bipartite graph, \(\delta_L(G) \geq q\) and \(\delta_R(G) \geq p\). If \(T \setminus U_y \leq G\) then \(T \leq G\).
Proof. Let $T = (L, R; E)$ be a (p, q)-tree, $y \in V(T)$, $U_y \neq \emptyset$ and let $G = (L', R'; E')$ be a (p', q')-bipartite graph verifying the assumptions of the lemma. Without loss of generality we may assume that $y \in L$. Let us denote by T_1 the tree $T \setminus U_y$. Let $|U_y| = k$. If $k = q$ then $T = K_{1,q}$ and $T \leq G$. We now assume that $k \leq q - 1$. Note that $T_1 = (L_1, R_1; E_1)$ is a $(p, q - k)$-tree and $1 \leq d(y, T_1) \leq q - k$. By assumptions of the lemma, there exists an embedding f of T_1 into G. Let $f(y) = z$. We will denote by $N^*(z)$ the set $\{w \in N(z, G) \mid w \in f[R_1]\}$. Hence $|N^*(z)| \leq q - k$. Since $\delta_L(G) \geq q$, there are k vertices w_i such that $w_i \in (N(z, G) \setminus N^*(z))$. If $W^* = \{w_i, i = 1, \ldots, k\}$ then the function f^* such that $f^*(v) = f(v)$ for $v \in V(T_1)$ and $f^*[U_y] = W^*$ is an embedding of T into G.

The Proof of Lemma A. The proof is by induction on $p + q$. If T is a (p, q)-tree such that $p + q \leq 4$ and G is a (p', q')-bipartite graph verifying the assumptions of the lemma, then the lemma is easy to check.

So, let us suppose $p + q \geq 5$ and the lemma is true for all integers p_1, q_1 with $p_1 + q_1 < p + q$. Let T be a (p, q)-tree and let G be a (p', q')-bipartite graph such that $\delta_L(G) \geq q$ and $\delta_R(G) \geq p$. There exists a vertex y in $V(T)$ such that $|U_y| = k > 0$. Without loss of generality we may assume that $y \in L$. If $k = q$, then the lemma is obvious. If $k \leq q - 1$, then let us denote by T_1 the tree $T \setminus U_y$. Since T_1 is $(p, q - k)$-tree it follows, by the induction hypothesis, that $T_1 \leq G$. We obtain an embedding of T into G by Lemma 3.1.

Lemma 3.2 Let T be a (p, q)-tree such that $T \neq K_{1,q}$ and $T \neq K_{p,1}$. Then there exist at least two penultimate vertices in $V(T)$.

The proof of Lemma 3.2 is trivial.

The Proof of Lemma B. Let $T = (L, R; E)$ be a (p, q)-tree such that $\Delta_L(T) \leq q - 1$ and let $G = (L', R'; E')$ be a (p', q')-bipartite graph verifying assumptions of Theorem B. The proof will be divided into two steps.

Case 1. Let us first assume that there exists a penultimate vertex, say y, in L.

Let $|U_y| = k > 0$, $\{x\} = N(y, T) \setminus U_y$ and let us denote by T_1 the tree $T \setminus U_y = (L_1, R_1; E_1)$. T_1 is a $(p, q - k)$-tree. By Lemma A, there exists an embedding f of T_1 into G. Let $f(y) = w$, $f(x) = z$, $f[L_1] = L'_1$ and $f[R_1] = R'_1$. If $d(w, G) \geq q$ or $R'_1 \not\subset N(w, G)$, then there are k vertices, $v_1, \ldots, v_k \in (N(w, G) \setminus R'_1)$. The function f^* such that

$$f^*(v) = f(v), \text{ for } v \in V(T_1)$$

$$f^*(x_i) = v_i, \text{ for } x_i \in U_y, \quad i = 1, \ldots, k$$

is an embedding of T into G. So, we may assume that $d(w, G) = q - 1$ and $R'_1 \subset N(w, G)$. Write $R'_2 = N(w, G) \setminus R'_1$.

Subcase 1.1 There exists a vertex $w_1 \in N(z, G)$ such that $d(w_1, G) \geq q$ or $|N(w_1, G) \cap R'_1| < q - k$.

Then, the vertex w_1 has k neighbors, say z'_1, \ldots, z'_k, which are not elements of R'_1. Thus we conclude that the function f_1^* given by

$$
\begin{align*}
 f_1^*(v) &= f(v), \text{ for } v \in V(T_1) \setminus \{y\}, \\
 f_1^*(y) &= w_1, \\
 f_1^*(x_i) &= z'_i, \text{ for } x_i \in U_y, \quad i = 1, \ldots, k,
\end{align*}
$$

and, if $w_1 \in f[L_1]$ and $w_1 = f(v^*)$ then $f_1^*(v^*) = w$, is the embedding of (p, q)-trees 123.

Subcase 1.2 Now we assume that for each vertex $w' \in N(z, G)$ there is $|N(w', G) \cap R'_1| = q - k$ and $d(w', G) = q - 1$.

Observe that in this case G has a subgraph H such that H is a $(p'_1, q - k)$-complete bipartite graph, $L(H) = N(z, G)$, $R(H) = R'_1$ and $p'_1 = d(z, G) \geq p$.

Subcase 1.2.1 There is a vertex $w'_1 \in N(z, G)$ such that $N(w'_1, G) \neq N(w, G)$.

Thus there exist vertices $z_1 \in R' \setminus N(w, G)$, $z_2 \in R'_2$ such that $z_1w'_1 \in E'$ and $z_2w'_1 \notin E'$. By Lemma 3.2, there is a penultimate vertex $y' \neq y$ in $V(T)$. First we assume that $y' \in L$. We will denote by F_2 the forest $T \setminus U_{y'} \setminus \{y, y', x'_1\}$, where $x'_1 \in U_{y'}$. By Lemma A, $F_2 \leq H_1 = H \setminus \{z_3, w, w'_1\}$, where $z_3 \in R(H)$. If f_2 is an embedding of F_2 into H_1 then the embedding f_2^* of T into G is defined as follows:

$$
\begin{align*}
 f_2^*(v) &= f_2(v), \text{ for } v \in V(F_2), \\
 f_2^*[U_{y'}] &= R'_2 \cup \{z_3\}, \\
 f_2^*(y') &= w'_1, \\
 f_2^*(x'_1) &= z_1, \\
 f_2^*(y) &= w.
\end{align*}
$$

Let now $y' \in R$ and $|U_{y'}| = k'$ and let $x' \in (N(y', T) \setminus U_{y'})$. Let us denote by T_3 the tree $T \setminus U_{y'} \setminus U_y \setminus \{y, x', y'\}$, and by H_2 a bipartite graph such that $L(H_2) = L(H) \setminus \{w, w'_1\} \setminus L'_3$, where $L'_3 \subset N(z_1, G) \setminus \{w, w'_1\}$, $|L'_3| = k'$, $R(H_2) = R(H) \setminus \{z_3\}$, and $z_3 \in R(H)$. By Lemma A, there is an embedding f_3 of T_3 into H_2. Let f_3^* be given as follows:

$$
\begin{align*}
 f_3^*(v) &= f_3(v), \quad v \in V(T_3), \\
 f_3^*(y) &= w, \\
 f_3^*(x') &= w'_1, \\
 f_3^*[U_{y'}] &= R'_2 \cup \{z_3\}, \\
 f_3^*(y') &= z_1.
\end{align*}
$$
\[f_3^*[U_{y'}] = L_3'. \]

Therefore, \(T \leq G \).

Subcase 1.2.2 Each vertex \(w' \in N(z, G) \) has the degree \(q - 1 \) and \(N(w, G) = N(w', G) \). It follows that \(G \) has a subgraph \(H_3 = K_{p', q-1} \), where \(L(H_3) = N(z, G) \), \(R(H_3) = N(w, G) \). Observe that \(R \setminus R(H_3) \neq \emptyset \) and \(N(L(H_3), R \setminus R(H_3); G) = \emptyset \). Let \(z_4 \) be a vertex in \(R \setminus R(H_3) \). By assumption of the theorem, there are vertices \(z_5 \in R(H_3) \) and \(w_2 \in L(G) \setminus L(H_3) \) such that \(z_4w_2 \in E(G) \) and \(w_2z_5 \in E(G) \). It is easily seen that \(T_4 = (T \setminus U_{y'} \setminus \{x, y\}) \leq (H_3 \setminus \{z_5\} \setminus R_4') \), where \(R_4' \subset (N(w_2, G) \setminus \{z_5\}) \) and \(|R_4'| = k \) and \(z_4 \in R_4' \). Obviously, \(T \leq G \), again.

Case 2 Let us assume there is no penultimate vertex in \(L \).

Thus, by Lemma 3.2, there exist at least two penultimate vertices in \(R \). Let \(y_1 \) be a penultimate vertex in \(R \) and let \(\{x''\} = N(y_1, T) \setminus U_{y_1} \).

Consider a tree \(T_5 \) obtained from the tree \(T \) by deleting pendant vertices \(x_1, x_2, \ldots, x_k \), so that the vertex \(x'' \) may be penultimate vertex in \(L \).

By Case 1, \(T_5 \leq G \) and by assumption \(\delta_R(G) \geq p \) we deduce that \(T \leq G \) and the theorem is proved.

Acknowledgements

The author gratefully acknowledges the many helpful suggestions of Professor A. Paweł Wojda during the preparation of the paper.

REFERENCES

Bipartite embedding of \((p, q)\)-trees

Beata Orchel
orchel@agh.edu.pl
AGH University of Science and Technology
Faculty of Applied Mathematics
al. Mickiewicza 30, 30-059 Kraków, Poland

Received: August 28, 2005.