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EQUITABLE COLORING OF GRAPH PRODUCTS

Abstract. A graph is equitably k-colorable if its vertices can be partitioned into k

independent sets in such a way that the number of vertices in any two sets differ by at
most one. The smallest k for which such a coloring exists is known as the equitable chromatic
number of G and denoted by χ=(G). It is interesting to note that if a graph G is equitably
k-colorable, it does not imply that it is equitably (k+ 1)-colorable. The smallest integer k
for which G is equitably k′-colorable for all k′ ≥ k is called the equitable chromatic threshold
of G and denoted by χ∗

=(G). In the paper we establish the equitable chromatic number and
the equitable chromatic threshold for certain products of some highly-structured graphs.
We extend the results from [2] for Cartesian, weak and strong tensor products.
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1. INTRODUCTION

A graph is a pair G = (V,E), where V is a finite set of vertices and E ⊆ {{u, v}|u, v ∈
V, u 6= v} is a set of edges. Hence graphs considered in this paper are undirected,
finite and contain neither loops nor multiple edges. A graph product G1 ⋆ G2 of two
graphs G1 = (V1, E1) and G2 = (V2, E2) most commonly means a graph with the
vertex set V1 × V2, while its edges can be determined in quite different ways. We
will consider three of them: the Cartesian product, the weak tensor product and the
strong tensor product.
The Cartesian, weak tensor and strong tensor products of graphs G1 and G2

will be denoted by G1�G2, G1 ×G2 and G1 ⊠G2, respectively. Let ij, kl ∈ V1 × V2.
Then {ij, kl} belongs to:

E(G1�G2) whenever i = k and {j, l} ∈ E2, or j = l and {i, k} ∈ E1;
E(G1 ×G2) whenever {i, k} ∈ E1 and {j, l} ∈ E2;
E(G1 ⊠G2) whenever {ij, kl} ∈ E(G1�G2) ∪ E(G1 ×G2).
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Fig. 1. Examples of graph products: a) P3�P4, b) P3 × P4, c) P3 ⊠ P4

Examples of graph products are given in Figure 1.

For a graph G = (V,E) and S ⊆ V , the symbol N(S) ⊆ V denotes the neigh-
borhood of S, i.e., the set consisting of all vertices adjacent to the vertices in S. We
denote the (maximum) degree of G, i.e., the maximum of the vertex degrees, by
∆ = ∆(G).

Definition 1. A graph G is said to be equitably k-colorable if its vertices can be
partitioned into k classes V1, V2, . . . , Vk such that each Vi is an independent set and
the condition ||Vi| − |Vj || ≤ 1 holds for every i, j. The smallest integer k for which G
is equitably k-colorable is known as the equitable chromatic number of G and denoted
by χ=(G).

Since an equitable coloring is a proper coloring, there is:

χ=(G) ≥ χ(G). (1)

Applications of equitable coloring can be found in scheduling and timetabling.
Consider, for example, a problem of constructing university timetables. As we know,
we can model this problem as coloring the vertices of a graph G whose nodes
correspond to classes, edges correspond to time conflicts between classes, and colors
to hours. If the set of available rooms is restricted, then we may be forced to partition
the vertex set into independent subsets of as near equal size as possible, since then
the room usage is the highest. We can find another application of equitable coloring
in transportation problems. Here, the vertices represent garbage collection routes and
two such vertices are joined by an edge when the corresponding routes should not
be run on the same day. The problem of assigning one of the six days of the work
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week to each route becomes the problem of 6-coloring of G. On practical grounds
it might also be desirable to have an approximately equal number of routes run on
each of the six days, so we have to color the graph in the equitable way.
The notion of equitable colorability was introduced by Meyer [10]. However, an

earlier work of Hajnal and Szemerédi [5] showed that a graph G with degree ∆(G)

is equitably k-colorable if k ≥ ∆(G)+1. In 1973, Meyer [10] formulated the following
conjecture:

Conjecture 1 (Equitable Coloring Conjecture (ECC) [10]). For any connected
graph G, other than a complete graph or an odd cycle, χ=(G) ≤ ∆(G).

We also have a stronger conjecture:

Conjecture 2 (Equitable ∆-Coloring Conjecture [1]). If G is a connected graph
of degree ∆, other than a complete graph, an odd cycle or a complete bipartite graph
K2n+1,2n+1 for any n ≥ 1, then G is equitably ∆-colorable.

The Equitable ∆-Coloring Conjecture holds for some classes of graphs, e.g.,
bipartite graphs [9], outerplanar graphs with ∆ ≥ 3 [13] and planar graphs with
∆ ≥ 13 [14]. It is interesting to note that if a graph G is equitably k-colorable,
it does not imply that it is equitably (k + 1)-colorable. A counterexample is the
complete bipartite graph K3,3 which can be equitably colored with two colors, but
not with three. The smallest integer k, for which G is equitably k′-colorable for all
k′ ≥ k, is called the equitable chromatic threshold of G and denoted by χ∗

=(G).
The general problem of deciding if χ=(G) ≤ 3 is NP -complete [4]. If, however, G

has a regular or simplified structure we are sometimes able to provide a polynomial
algorithm coloring it in the equitable way. In this paper we consider the equitable
coloring of Cartesian, weak tensor and strong tensor products.
Graph products are interesting and useful in many situations. For example, Sab-

bidussi [11] showed that any graph has the unique decomposition into prime factors
under the Cartesian product. Feigenbaum and Schäffer [3] showed that the strong
tensor product admits a polynomial algorithm for decomposing a given connected
graph into its factors. An analogous result with respect to weak tensor product is
due to Imrich [7]. The complexity of many problems, also equitable coloring, that
deal with very large and complicated graphs is reduced greatly if one is able to fully
characterize the properties of less complicated prime factors.
This work presents some preliminary results of the problem of equitable coloring

of graph products. We establish some exact values of the equitable chromatic number
and the equitable chromatic threshold for the three above-mentioned products of some
graphs with particular properties. Some bounds to these parameters are presented.
In the next chapter, the complexity of the problem of coloring the Cartesian product
of any two graphs is also established and proved. To our knowledge, this paper is the
second one, after Chen’s manuscript [2], concerning the equitable coloring of graph
products.
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2. EQUITABLE COLORING OF CARTESIAN PRODUCTS

Chen et al. in [2] obtained the following results.

Theorem 2.1 ([2]). If G1 and G2 are equitably k-colorable, then so is G1�G2.

As the corollary from this theorem we obtain the following.

Corollary 1. χ∗
=(G1�G2) ≤ max{χ∗

=(G1), χ
∗
=(G2)}.

Since χ∗
=(G1) ≤ ∆(G1) + 1 and χ∗

=(G2) ≤ ∆(G2) + 1, then χ∗
=(G1�G2) ≤

max{∆(G1) + 1,∆(G2) + 1}. When both G1 and G2 have at least one edge,
∆(G1�G2) ≥ max{∆(G1)+1,∆(G2)+1}. Therefore, G1�G2 is equitably∆(G1�G2)-
colorable, i.e., the Equitable ∆-Coloring Conjecture holds. Sabidussi [11] proved the
following result for the classical coloring of Cartesian products.

Theorem 2.2. χ(G1�G2) = max{χ(G1), χ(G2)}.

We know that the inequality in Corollary 1 cannot be replaced by equality. Let
us consider the graph K1,3�P2 (see Fig. 2). The equitable chromatic thresholds of the
factors are 3 and 2, respectively, and the equitable chromatic threshold of K1,3�P2

is equal to 2.

1

1

1

1

2

2

2

2

Fig. 2. The graph K1,3�P2 and its equitable coloring

Unfortunately, the inequality χ=(G1�G2) ≤ max{χ=(G1), χ=(G2)} does not
hold for every pair of graphs. Chen et al. in [2] gave a counterexample where G1 =

K3,3 and G2 = K2,1,1.
Due to the above theorems, the following corollary holds.

Corollary 2. Let G = G1�G2� · · ·�Gn, where each Gi is a path, a cycle, a hypercube
or a complete graph. Then χ(G) = χ=(G) = χ∗

=(G) = max{χ(Gi) : i = 1, 2, . . . , n}.
�

It is easy to give explicit formulas for the equitable chromatic number of Carte-
sian products of some classes of graphs. Chen et al. [2] proved the following.
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Theorem 2.3 ([2]).

χ=(Km�Kn) = χ∗
=(Km�Kn) = max{m,n}. (2)

χ=(Cm�Cn) = χ∗
=(Cm�Cn) =

{
2 if m,n are even,

3 otherwise.
(3)

Theorem 2.4. Let G1(V1, V2) and G2(V
′
1 , V

′
2) be any bipartite graphs such that one

of them contains at least one edge and let |V ′
1 | = |V ′

2 |. Then

χ=(G1�G2) = 2.

Proof. The graph G1�G2 is given in Figure 3. The polygons represent independent
sets X1, X2, X3 and X4 of |V1| |V ′

1 |, |V1| |V ′
2 |, |V2| |V ′

1 |, |V2| |V ′
2 | vertices, respectively.

The lines show the possibilities of existing edges. If |V ′
1 | = |V ′

2 |, we can assign color 1
to the vertices of X1 and X4, and color 2 to the remaining vertices. The obtained
coloring is equitable.

1 2

2 1

V ′
1 V ′

2

V1

V2

G2

G1

Fig. 3. The graph G1(V1, V2)�G2(V
′
1 , V

′
2 ) and its equitable coloring. Polygons denote

independent sets and numbers denote colors assigned to vertices

We observe an obvious fact:

Fact 3. Let G = (V,E) and H = (V,E′) be graphs with common vertex set such that
E ⊆ E′. Then χ=(G) ≤ χ=(H).

Corollary 4. Let k,m, n and r be positive integers. Then the equitable chroma-
tic numbers of the following graphs all equal to 2. C2m�C2n, Pm�C2n, Qr�C2n,
Kk,m�C2n, K1,m�C2n, Pm�P2n, Qr�P2n, Kk,m�P2n, K1,m� P2n, Qr�Qr, where
Qd is a hypercube and Kk,m is a complete bipartite graph.

The result of Theorem 2.4 can be extended on r-partite graphs, r ≥ 2.
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Theorem 2.5. Let G1(V1, V2, . . . , Vr) and G2(V
′
1 , V

′
2 , . . . , V

′
r ) be any r-partite graphs

such that |V ′
1 | = |V ′

2 | = · · · = |V ′
r |. Then

χ=(G1�G2) ≤ r.

Proof. Use an r × r Latin square.
Moreover, it is interesting to note that the following theorem is also true.

Theorem 2.6. χ=(G�P3k) ≤ 3 if and only if G is a tripartite graph.

Proof.

(⇐) It simply follows from Theorem 2.5.

(⇒) Since G ⊂ G�P3k, its chromatic number cannot be greater than the equitable
chromatic number of G�P3k.

Theorem 2.7. Let G,H be graphs. The problem of deciding whether χ=(G�H) ≤ 3

is NP-complete even if one of its factors is a path.

Proof. This theorem immediately follows from Theorem 2.6 and the NP -completeness
of the problem of 3-coloring in the classical sense.
Now we give further exact values of equitable chromatic numbers of some pro-

ducts.

Theorem 2.8. Let m,n be positive integers, m,n ≥ 3 and n is odd. Then

χ=(K1,m�Pn) = 3. (4)

Proof. For n odd, the graph K1,m�Pn is a connected bipartite graph (V1 ∪ V2, E),
where |V1| = (n− 1)/2 +m(n+ 1)/2 and |V2| = (n+ 1)/2 +m(n− 1)/2 (see Fig. 4).
Since |V1| − |V2| = m− 1, an equitable 2-coloring is not possible for m ≥ 3.

v11

v51

v41

v31

v21
v(m+1)1

v12

v52

v42

v32

v22
v(m+1)2

v1nv1(n−1)

v5n

v4n

v3n

v2n
v(m+1)n

Fig. 4. A bipartite graph (V1 ∪ V2, E) = K1,m�Pn for odd n. Vertices marked with black
circles belong to V1, and the others to V2

To show that the graph is equitably 3-colorable, we shall form an independent
set S ⊂ V1∪V2 such that |S| = ⌈n(m+1)/3⌉, |S ∩ V1| = |V1|−⌈(n(m+1)−1)/3⌉ and
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|S ∩ V2| = |V2| − ⌈(n(m + 1) − 2)/3⌉, and then color the vertices of S with color 1,
those in V1\S with color 2, and those in V2\S with color 3. The coloring is equitable.
Consider the sequence v21, v31, . . . , v(m+1)1, v12, v23, . . . , v(m+1)3, v14, . . . , v2(n−2),

. . . , v(m+1)(n−2), v1(n−1), v2n, . . . , v(m+1)n of vertices of V1 (see Fig. 4). Notice that
v21 has two neighbors in V2 and adding each next element except one of v2n, v3n,
. . . , v(m+1)n increases the number of their neighbours in V2 by one.
Now we choose the first |V1| − ⌈(n(m+ 1)− 1)/3⌉ elements of the sequence and

put them into S. Since ⌈(n(m+1)−1)/3⌉ ≥ m for n ≥ 3, they will form the set S∩V1

such that |N(S ∩ V1)| = |S ∩ V1| + 1. The vertices from S ∩ V1 and V2\N(S ∩ V1)

form an independent set of cardinality |V2| − 1. Since |V2| > ⌈n(m+ 1)/3⌉ for every
odd n ≥ 3 and m ≥ 3, so it is possible to select the remaining elements of the set S
from V2\N(V1 ∩ S).

3. EQUITABLE COLORING OF WEAK TENSOR PRODUCTS

In 1966 Hedetniemi [6] formulated a conjecture concerning the classical coloring of
weak tensor products. A good survey on this conjecture is given in [15].

Conjecture 3 ([6]). χ(G1 ×G2) = min{χ(G1), χ(G2)}.

If Conjecture 3 is true, then:

χ=(G1 ×G2) ≥ min{χ(G1), χ(G2)}. (5)

There also holds the following

Lemma 5.
χ=(G1 ×G2) ≤ min{|V (G1)|, |V (G2)|}. (6)

Proof. Let V (G1) = {u0, u1, . . . , ul} and let Ui = {ui} × V (G2), i = 0, 1, . . . , l.
Then Ui is an independent vertex set in the graph G1 × G2 and |Ui| = |V (G2)|,
i = 0, 1, . . . , l. So χ=(G1 ×G2) ≤ |V (G1)|. The inequality χ=(G1 ×G2) ≤ |V (G2)| is
proved in a similar way.
We know that the bound given in Lemma 5 on the equitable chromatic number

is not a bound on the equitable chromatic threshold. Chen et al. [2] gave a counte-
rexample of K2 ×Kn. They suggest that the following holds.

Conjecture 4 ([2]).

χ∗
=(G1 ×G2) ≤ max{|V (G1)| , |V (G2)|}. (7)

Now we give some formulas involving the equitable chromatic number of weak
tensor products for some graphs having particular properties.

Theorem 3.1 ([2]).

χ=(Km ×Kn) = min{m,n}. (8)
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χ=(Cm × Cn) = χ∗
=(Cm × Cn) =

{
2 if mn is even,

3 otherwise.
(9)

Theorem 3.2. Let G,H be graphs with at least one edge each and let G = (V1∪V2, E)

be a bipartite graph such that |V1| = |V2|. Then

χ=(G×H) = 2.

Proof. By the definition, the sets V1 × V (H) and V2 × V (H) are independent vertex
sets. Since |V1| = |V2|, the sets have the same number of elements. We assign
color number 1 to vertices from V1 × V (H) and color number 2 to the remaining
vertices. The coloring is an equitable 2-coloring. Since E(G×H) 6= ∅, the coloring is
optimal.
Using Theorem 3.2, we obtain simple corollaries.

Corollary 6. Let H be any graph with at least one edge each and let d,m and n be
positive integers. Then:

χ=(Cn ×H) = 2 for even n,

χ=(Pn ×H) = 2 for even n,

χ=(Qd ×H) = 2,

χ=(Km,n ×H) = 2 for m = n.

Corollary 7. Let G,H1,H2, . . . ,Hl be graphs with at least one edge and let G =

(V1 ∪ V2, E) be bipartite graph such that |V1| = |V2|. Then

χ=(G×H1 ×H2 × . . .×Hl) = 2.

The result of Theorem 3.2 can be extended.

Theorem 3.3. Let H be any graph with at least one edge and let G = (V1 ∪ V2 ∪
· · · ∪ Vr, E) be r-partite such that |Vi| = |Vj | for any i 6= j. Then

χ=(G×H) ≤ r.

Corollary 8. Let H be any graph and let k and n be positive integers. Then:

χ=(Cn ×H) ≤ 3, for n = 3k,

χ=(Kn ×H) ≤ n.

Now we give some exact values of the equitable chromatic number of products
of some graphs.

Theorem 3.4. Let m and n be positive integers. Then

χ=(K1,m ×K1,n) =
(m+ 1)(n+ 1)

max{m,n}+ 1
= min{m,n}+ 1. (10)
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Proof. First, we notice that K1,m×K1,n = K1,m·n∪Km,n. Without loss of generality,
we can assume that n ≥ m. The maximal size of color classes containing the universal
vertex of K1,m·n, let us say x, is equal to n+ 1. We assign color number 1 to vertex
x and to n independent vertices of Km,n. We have mn +m = m(n + 1) uncolored
independent vertices. We form m color classes of equal size. Hence

χ=(K1,m ×K1,n) ≤
(m+ 1)(n+ 1)

max{m,n}+ 1
= min{m,n}+ 1.

Now we show that we cannot use smaller number of colors. Let us assume the
contrary. Color 1 can be used at most n+1 times. We will try to divide the m(n+1)

uncolored independent vertices into l1 classes of size n+1 and l2 classes of size n+2,
where l1 ≥ 0, l2 ≥ 1 and l1 + l2 < m. We have

m(n+ 1) = l1(n+ 1) + l2(n+ 2).

Since n + 1 and n + 2 are relatively prime, then m − l1 = k(n + 2), k ≥ 1. But we
have assumed that n ≥ m. It is a contradiction. We have proved that Formula (10)
is true.
Now we give a more general theorem.

Theorem 3.5. Let m,n be positive integers, m,n > 1. Then

χ=(Kn × Pm) =

{
2 if m is even or n = 2,

3 otherwise.

Proof. The graph Kn × Pm is a bipartite graph (V1 ∪ V2, E) such that every second
column belongs to V2, i.e., |V1| = ⌈m/2⌉n and |V2| = ⌊m/2⌋n (see Fig. 5).

2 1 2 0 2

0 1 2 0 1

0 1 2 0 1

0 1 2 0 1

Fig. 5. The graph K4 × P5 and its equitable 3-coloring

The case of m even or n = 2 was described earlier. We now have to prove the
remaining one, mainly when m is odd and n ≥ 3.
We first color the i-th column with i mod 3, then change the colors of some

vertices in the first and last column in the following way. If m = 6k + 1, k ≥ 1,
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vertices in the first and last column are colored with 0. We change the color of
⌈(n − 2)/3⌉ vertices in the first column to 2 and ⌈(n − 1)/3⌉ vertices in the last
column to 1. The case of m = 3k, k ≥ 1, was described earlier, so it remains to
consider the situation when m = 6k − 1, k ≥ 1. Then we change the colors of
n−⌈2n/3⌉ vertices from the first column and n−⌈(2n− 1)/3⌉ vertices from the last
column to 2.
So the obtained colorings are equitable. Moreover, since m is odd, |V1| − |V2| =

n ≥ 3 and we cannot use less than three colors.

Corollary 9. Let G be a graph with n vertices and at least one edge and let m,n be
positive integers. Then

χ=(G× Pm) ≤
{
2 if m is even,

3 otherwise.

Corollary 10. Let m,n ≥ 3 be odd positive integers. Then

χ=(Pm × Pn) = 3. (11)

Proof. Corollary 9 implies χ=(Pm × Pn) ≤ 3. The graph Pm × Pn is a disjoint union
of two bipartite graphs G1(V1, V2) and G2(V

′
1 , V

′
2) such that |V1| = ⌈n/2⌉ · ⌈m/2⌉,

|V2| = ⌊n/2⌋ · ⌊m/2⌋, |V ′
1 | = ⌊n/2⌋ · ⌈m/2⌉ and |V ′

2 | = ⌈n/2⌉ · ⌊m/2⌋. Without loss of
generality, assume n ≥ m. Then |V1| ≥ |V2|, |V ′

1 | ≥ |V ′
2 | and |V1|+|V ′

2 |−(|V2|+|V ′
1 |) =

m ≥ 3. So we cannot color this graph equitably with two colors.

Corollary 11. Let m,n be positive integers and n ≥ 2. Then

χ=(K1,m × Pn) =

{
2 if n is even or m = 1,

3 otherwise.
(12)

Proof. The graph K1,m × Pn consists of two components that are bipartite graphs
H1 = (V1 ∪ V2, E) and H2 = (V ′

1 ∪ V ′
2 , E

′), where |V1| = ⌈n/2⌉, |V2| = ⌊n/2⌋ · m,
|V ′

1 | = ⌊n/2⌋ and |V ′
2 | = ⌈n/2⌉ ·m (see Fig. 6).

v1 v2 v⌈n/2⌉

m arms

w1 w2 w⌊n/2⌋

H1 H2

Fig. 6. A graph K1,m × Pn.
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When n is even, an equitable 2-coloring is easy to achieve. We color all vertices
in V1 ∪ V ′

2 with color 1 and all vertices in V ′
1 ∪ V2 with color 2. We have used each

color n/2+mn/2 times, so the coloring is equitable. For m = 1, the graph K1,m×Pn

is a disjoint union of two paths of length n− 1, so it can be colored equitably with
two colors.
In the case of n odd and m ≥ 2, the following inequalities hold: (|V1|+ |V ′

2 |)−
(|V ′

1 |+|V2|) > 1 and (|V2|+|V ′
2 |)−(|V1|+|V ′

1 |) > 1. It is impossible to color K1,m×Pn

equitably with 2 colors. Formula (12) is true due to Corollary 9.
Corollary 11 implies that a theorem similar to Theorem 2.1 is not true for weak

tensor products. We cannot say that if G1 and G2 are equitably k-colorable, then
so is G1 × G2. For example, K1,2 and P3 are equitably 2-colorable, but their weak
tensor product is not.

4. EQUITABLE COLORING OF STRONG TENSOR PRODUCTS

We know some lower bounds for the equitable chromatic number of strong ten-
sor products of graphs. They follow from Vesztergombi’s [12] and Jha’s [8] results
concerning the proper coloring of this product.

Theorem 4.1 ([12]). Let G1, G2 be graphs with at least one edge each. Then

χ=(G1 ⊠G2) ≥ max{χ(G1), χ(G2)}+ 2. (13)

Theorem 4.2 ([8]). Let G1, G2 be graphs with at least one edge each. Then

χ=(G1 ⊠G2) ≥ χ(G1) + ω(G2). (14)

In the rest of this section, we collect several exact results.

Theorem 4.3. Let m,n be positive integers and m,n > 1. Then

χ=(Pm ⊠ Pn) =

{
4 if nm is even,

5 otherwise.
(15)

Proof. As we know, E(Pm ⊠ Pn) = E(Pm�Pn) ∪ E(Pm × Pn). In the case of nm
even, the coloring is straightforward. Let us assume that m is even. We color the
vertices in odd rows with colors 1 and 2, alterately, but in rows 2k+1 for even k we
start with color 1, and in rows 2k+1 for odd k we start with color 2. Even rows are
colored with colors 3 and 4, alternately, but we start coloring the vertices in 2k-th
rows for odd k with color 3 and in others with color 4 (cf. Fig. 1). Each color is used⌈
mn
4

⌉
or

⌊
mn
4

⌋
times and ω(Pm ⊠ Pn) = 4, so the obtained coloring is equitable and

optimal.
In the second case, both m and n are odd. n might take one of five forms: 5k−4,

5k − 2, 5k, 5k + 2, 5k + 4 for some odd k.
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Now we have to consider five cases.

1) n = 5k

This case is the simplest one. We color each row with colors 1, 2, 3, 4 and 5,
consecutively. In the i-th row, we start with color s, where

s =

{
5 if 2i− 1 ≡ 0 (mod 5),

(2i− 1) mod 5 otherwise.
(16)

We have used each color mn/5 times, so the coloring is equitable. Next two
cases are based on this algorithm.

2) n = 5k − 4

We can change the form of n to 5l+1, for some even l. Then, we equitably color
the graph Pm ⊠ P5l ⊂ Pm ⊠ P5l+1 in the way shown in Case 1. Vertices in the
last column of Pm ⊠ P5l+1 are not colored. Each of these vertices (in the i-th
row) gets color number s, where s is determined as above. Each color is used
⌈mn/5⌉ or ⌊mn/5⌋ times, so the coloring is equitable.

3) n = 5k + 4

First, we equitably color Pm ⊠P5l, where l = k+1. If we remove the vertices in
the last column and edges incident to them, we will obtain a graph Pm ⊠P5k+4

with proper equitable coloring. Each color is used ⌈mn/5⌉ or ⌊mn/5⌋ times.
4) n = 5k + 2

In this case, the equitable coloring is obtained as follows. We color the first row
with colors 1, 2, 3, 4 and 5, consecutively. The vertex in the last column gets
color number 2 ≡ 5k+2 (mod 5). We continue coloring in the next row starting
with color number ((5k + 2) mod 5) + 1 and so on (see Fig. 7).

5) n = 5k − 2

This case is very similar to Case 4. We color the first row with colors 1, 2,
3, 4 and 5, consecutively. The vertex in the last column gets color number
3 ≡ 5k − 2 (mod 5). We continue coloring in the next row starting with color
number ((5k − 2) mod 5) + 1 and so on.
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1

1

1

1

2

2

2

2

3

3

3

34

4

4

4

5

5

5

5

Fig. 7. The graph P3 ⊠ P7 with its equitable coloring. The thick arrows show the order
of color assignments.
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In all five cases we have obtained an equitable coloring with five colors. It remains
to show that the strong tensor product of two odd paths does not have an equitable
4-coloring. Suppose that there is such a coloring. We claim that either exactly two
colors appear alternately in every row or exactly two colors appear alternately in
every column. Moreover, in, say odd, rows four distinct colors appear consecutively,
say 1, 2, 3 and 4. In even rows, the pattern must be 3, 4, 1 and 2. It now follows
that one of the colors appears in the first or last column too many times. It is
a contradiction.

Theorem 4.4. Let l1, l2 be integers such that l1 ≥ 0 and l2 ≥ 2. Then

χ=(C5(2l1+1) ⊠ C2l2+1) = 5. (17)

Proof. We start with an equitable coloring of C5⊠C5. It is shown in Figure 8, where
the entry cij denotes the color of vertex vij .
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5
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3

4

3

2

1

5

1

5

4

3

2

3

2

1

5

4

Fig. 8. A coloring matrix C of the graph C5 ⊠ C5.

For C5 ⊠ C2l2+1 (l2 > 2), we color the first 5 columns in the same way as in
C5⊠C5, and we repeat the colorings of the 4-th and 5-th column (l2−2) times. This
trivially gives an equitable coloring.
In the case of C5(2l1+1) ⊠ C2l2+1, l1 > 0, first we equitably color C5 ⊠ C2l2+1,

then each i-th row, i > 5, is colored like the s-th one, where s

s =

{
5 if i ≡ 0 (mod 5),

i mod 5 otherwise.
(18)

It is easy to see that the coloring is equitable. Since χ(C2l1+1 ⊠ C2l2+1) = 5 ([12]),
then our coloring is optimal.
It would be interesting to give some relations between the equitable chroma-

tic number or threshold of a graph product and equitable chromatic numbers or
thresholds of its factors. The products of more than two graphs are also of interest.
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