Abstract. A 2-dominating set of a graph G is a set D of vertices of G such that every vertex not in S is dominated at least twice. The minimum cardinality of a 2-dominating set of G is the 2-domination number $\gamma_2(G)$. We show that if G is a nontrivial connected cactus graph with $k(G)$ even cycles ($k(G) \geq 0$), then $\gamma_2(G) \geq \gamma_1(G) - k(G)$, and if G is a graph of order n with at most one cycle, then $\gamma_2(G) \geq (n + \ell - s)/2$ improving Fink and Jacobson’s lower bound for trees with $\ell > s$, where $\gamma_1(G)$, ℓ and s are the total domination number, the number of leaves and support vertices of G, respectively. We also show that if T is a tree of order $n \geq 3$, then $\gamma_2(T) \leq \beta(T) + s - 1$, where $\beta(T)$ is the independence number of T.

Keywords: 2-domination number, total domination number, independence number, cactus graphs, trees.

Mathematics Subject Classification: 05C69.

1. INTRODUCTION

Let $G = (V(G), E(G))$ be a graph with the vertex set $V(G)$ and edge set $E(G)$. The degree of a vertex v, $\deg_G(v)$, is the number of vertices adjacent to v. A vertex of degree one is called a leaf and its neighbor is called a support vertex. If u is a support vertex, then L_u will denote the set of leaves attached at u. A graph G is called a cactus graph if each edge of G is contained in at most one cycle. A cactus graph having one cycle is called a unicycle graph and a connected cactus graph with no cycles is called a tree. A tree T is a double star if it contains exactly two vertices that are not leaves. A double star with p and q leaves attached at each support vertex, respectively, is denoted by $S_{p,q}$. For a graph G we denote by $n(G)$, $\ell(G)$ and $s(G)$ the number of vertices, leaves and support vertices of G, respectively (we use n, ℓ and s if there is no ambiguity).
We are interested in a variation of domination in graphs, called 2-domination. A subset D of $V(G)$ is a 2-dominating set if every vertex not in S is adjacent to at least 2 vertices of D. The 2-domination number $\gamma_2(G)$ is the minimum cardinality of a 2-dominating set of G. Note that every graph G has a 2-dominating set since $V(G)$ is such a set. The concept of 2-domination was introduced by Fink and Jacobson [5, 6], and studied for example in [1, 2].

The independence number $\alpha(G)$ is the maximum cardinality among the independent sets of vertices of G. The concept of domination and its variations see the books of Haynes, Hedetniemi and Slater [8, 9].

In this paper we show that if G is a nontrivial connected cactus graph with $k(G)$ even cycles ($k(G) \geq 0$), then $\gamma_2(G) \geq \gamma_t(G) - k(G)$, and if G is a graph of order n with at most one cycle, then $\gamma_2(G) \geq (n + \ell - s)/2$. Finally, we show that every tree T of order at least three satisfies $\gamma_2(T) \leq \beta(T) + s - 1$.

2. LOWER BOUNDS

Before presenting our main results, we make a couple of straightforward observations.

Observation 1. Every 2-dominating set of a graph G contains every leaf.

Observation 2. Let T be a tree obtained from a nontrivial tree T' by adding a star $K_{1,p}$ with the center vertex v attached by an edge vw at a vertex w of T'. Then:

1) $\gamma_2(T') \leq \gamma_2(T) - |L_v|$, with equality if $p \geq 2$ or w is a leaf in T'.

2) $\beta(T') = \beta(T) - |L_v|$.

Proof. 1) Let D be a $\gamma_2(T)$-set. By Observation 1, D contains L_v and without loss of generality $v \notin D$ (else replace v by w in D). Thus $D - L_v$ is a 2-dominating set of T' and hence $\gamma_2(T') \leq \gamma_2(T) - |L_v|$. Now if $p \geq 2$, that is v is adjacent to at least two leaves, then every $\gamma_2(T')$-set can be extended to a 2-dominating set of T by adding L_v. So $\gamma_2(T) \leq \gamma_2(T') + |L_v|$, which leads the equality. Assume now that $p = 1$ and w is a leaf of T'. By Observation 1, w is in every $\gamma_2(T')$-set D', so D' is extended to a 2-dominating set of T by adding the leaf neighbor of v. Therefore, $\gamma_2(T) \leq \gamma_2(T') + 1$, implying the equality $\gamma_2(T) = \gamma_2(T') - 1$.

2) Obvious. \hfill \Box

In [7], Haynes et al. showed that the 2-domination number is bounded from below by the total domination number for every nontrivial tree.

Theorem 3 (Haynes et al. [7]). For every nontrivial tree, $\gamma_2(T) \geq \gamma_t(T)$.

Below, we extend this result onto cactus graphs. The total domination and 2-domination numbers of a cycle are easy to compute.
Observation 4. For a cycle C_n on $n \geq 3$ vertices:

i) $\gamma_t(C_n) = n/2$ if $n \equiv 0(\text{mod } 4)$ and $\gamma_t(C_n) = \lceil n/2 \rceil + 1$ otherwise,

ii) $\gamma_2(C_n) = \lceil n/2 \rceil$.

Theorem 5. If G is a nontrivial connected cactus graph with $k(G)$ even cycles ($k(G) \geq 0$), then $\gamma_2(G) \geq \gamma_t(G) - k(G)$, and this bound is sharp.

Proof. If G is a tree, then $k(G) = 0$ and by Theorem 3 the result is valid. If G is a cycle C_n, then by Observation 4, the result holds. Thus we assume that G is neither a tree nor a cycle C_n. Among all connected cactus graphs with $k(G)$ even cycles that do not satisfy the result, let G be one which contains as few vertices and edges as possible. Let S be a $\gamma_2(G)$-set. Assume first that there are two adjacent vertices x, y on some cycle such that x, y are both in S or both not in S. Consider the spanning graph G' obtained by removing the edge xy. Then S is a 2-dominating set of G' and hence $\gamma_2(G) = |S| \geq \gamma_2(G')$. Also $\gamma_t(G') \geq \gamma_t(G)$, since every total dominating set of G' is a total dominating set of G. Now G' satisfies the result and so $\gamma_2(G') \geq \gamma_t(G') - k(G')$. Since $k(G) \geq k(G')$, it follows that $\gamma_2(G) \geq \gamma_2(G') \geq \gamma_t(G') - k(G') \geq \gamma_t(G) - k(G)$, a contradiction.

Thus we assume that all vertices on the cycles are contained alternately in S. This implies that G contains no odd cycle. Let u, v be two adjacent vertices on an even cycle such that $u \in S$ and $v \notin S$. Let G'' be the spanning graph of G obtained by removing the edge uw. Then $S \cup \{v\}$ is a 2-dominating set of G'' and so $\gamma_2(G'') \leq |S| + 1$. There also is $\gamma_t(G'') \geq \gamma_t(G)$ and $k(G) = k(G'') + 1$. Now since G'' satisfies $\gamma_2(G'') \geq \gamma_t(G'' - k(G''))$, we obtain $\gamma_2(G) + 1 \geq \gamma_2(G'') \geq \gamma_t(G'' - k(G'')) \geq \gamma_t(G) - k(G) + 1$. Therefore, $\gamma_2(G) \geq \gamma_t(G) - k(G)$, a contradiction.

That this bound is sharp may be seen by considering the cactus graph G_q ($q \geq 1$) formed from q path P_3, each one with the center vertex v_i, where $1 \leq i \leq q$ and q cycle C_6 by adding edges between all center vertices so that the subgraph induced by the center vertices is a path P_q. Then we identify a vertex of a cycle C_6 with one leaf of each path P_3. See Figure 1 for an example of G_3. For G_q, $\gamma_2(G_q) = 5q$, $\gamma_t(G_q) = 6q$ and $k(G_q) = q$. □

![Fig. 1. The graph G_3](image-url)
In [5], Fink and Jacobson have established a lower bound on the 2-domination number for every tree in term of its order.

Theorem 6 ([5]). If T is a tree of order n, then $\gamma_2(T) \geq (n + 1)/2$.

Next we give a lower bound for the 2-domination number in trees that improves Fink and Jacobson’s one if $\ell > s$.

Lemma 7. If T is a tree of order n with ℓ leaves and s support vertices, then $\gamma_2(T) \geq (n + \ell - s)/2$, and this bound is sharp.

Proof. We proceed by induction on the order of T. If $\text{diam}(T) \in \{0, 1\}$, then the result is valid. If $\text{diam}(T) = 2$, then T is a star $K_{1,p}$ ($p \geq 2$), where $\gamma_2(T) = p$ and $(n + \ell - s)/2 = p$, so the result is valid. If $\text{diam}(T) = 3$, then T is a double star $S_{p,q}$, where $\gamma_2(T) = p + q$ if $\min\{p, q\} \geq 2$ and $\gamma_2(T) = 2 + \max\{p, q\}$ otherwise. Thus again the result is valid. Assume that for every tree T' of order n' with $n > n'$, there is $\gamma_2(T') \geq (n' + \ell' - s')/2$.

Let T be a tree of order n. Root T at a vertex r of maximum eccentricity $\text{diam}(T) \geq 4$. Let v be a support vertex of maximum distance from r and u the parent of v in the rooted tree.

Let $T' = T - (L_v \cup \{v\})$. Then $n' = n - (|L_v| + 1)$ and T' is nontrivial. We consider two cases.

Case 1. $\deg_T(v) \geq 3$. By Observation 2, since $|L_v| \geq 2$, then $\gamma_2(T) = \gamma_2(T') + |L_v|$.

If u is not a leaf in T', then $\ell' = \ell - |L_v|$ and $s' = s - 1$. Applying the inductive hypothesis to T',

$$\gamma_2(T) - |L_v| = \gamma_2(T') \geq (n' + \ell' - s')/2 = (n + \ell - s)/2 - |L_v|,$$

hence $\gamma_2(T) \geq (n + \ell - s)/2$.

If u is a leaf in T', then $\ell' = \ell - |L_v| + 1$ and $s' \leq s - 1$. Applying the inductive hypothesis to T',

$$\gamma_2(T) - |L_v| = \gamma_2(T') \geq (n' + \ell' - s')/2 \geq (n + \ell - s)/2 - |L_v|,$$

hence $\gamma_2(T) \geq (n + \ell - s)/2$.

Case 2. $\deg_T(v) = 2$, that is $|L_v| = 1$. If u is not a leaf in T', then $\ell' = \ell - 1$ and $s' = s - 1$. Again by Observation 2, $\gamma_2(T) - 1 \geq \gamma_2(T')$. Applying the inductive hypothesis to T', we obtain the desired result. Now if u is a leaf in T', then by Observation 2, $\gamma_2(T) - 1 = \gamma_2(T')$. Also $\ell' = \ell$ and $s' \leq s$. Applying the inductive hypothesis to T', the result follows.

That this bound is sharp may be seen in a tree T where every vertex T is either a leaf or a support vertex adjacent to at least two leaves. Clearly, $\ell = \ell + s$ and $\gamma_2(T) = \ell = (n + \ell - s)/2$. □

Notice that in [1], Blidia et al. showed that every nontrivial tree T satisfies $\gamma_2(T) \leq (n + \ell)/2$. So Lemma 7 gives in some sense a best framing for the 2-domination number in trees.
Theorem 8. If G is a graph of order n with at most one cycle, ℓ leaves and s support vertices, then $\gamma_2(G) \geq (n + \ell - s)/2$, and this bound is sharp.

Proof. If all the components of G are trees, then by Lemma 7 the result holds. If G is a cycle C_n then $\ell = s = 0$ and by Observation 4, $\gamma_2(C_n) = \lceil n/2 \rceil$, implying that the result is valid. Thus G contains a component H that is a unicycle graph with a cycle C where at least one vertex of C has degree at least three. It suffices to prove the theorem for the subgraph H. Let S be a $\gamma_2(H)$-set and assume that H is the smallest connected unicycle graph that does not satisfy the theorem.

Suppose that H contains a support vertex, say $v \notin C$. We further assume that v is at maximum distance from C. Then $L_v \subseteq S$ and without loss of generality $v \notin S$ (else replace v by its neighbor, say w, in the unique path from v to C). Let $H' = H - (L_v \cup \{v\})$. Then H' is a connected unicycle graph with $n(H') = n(H) - (|L_v| + 1)$ and $S - L_v$ is a 2-dominating set of H'. Hence $\gamma_2(H) - |L_v| \geq \gamma_2(H')$ and since H' is smaller than H, it satisfies the theorem. If $\deg_H(w) \geq 3$ then $\ell(H') = \ell(H) - |L_v|$ and $s(H') = s(H) - 1$.

It follows that

$$\gamma_2(H) - |L_v| \geq \gamma_2(H') \geq (n(H') + \ell(H') - s(H'))/2 =$$

$$= (n(H) - (|L_v| + 1) + \ell(H) - |L_v| - s(H) + 1)/2$$

and, therefore, $\gamma_2(H) \geq (n(H) + \ell(H) - s(H))/2$, contradicting our assumption.

Now if $\deg_H(w) = 2$, then $\ell(H') = \ell(H) - |L_v| + 1$ and $s(H') \leq s(H)$. It follows that

$$\gamma_2(H) - |L_v| \geq \gamma_2(H') \geq (n(H') + \ell(H') - s(H'))/2 \geq$$

$$\geq (n(H) - (|L_v| + 1) + \ell(H) - |L_v| + 1 - s(H))/2$$

and, therefore, $\gamma_2(H) \geq (n(H) + \ell(H) - s(H))/2$, a contradiction.

It remains to examine the case where every support vertex of H is on the cycle C. Let u be a support vertex on C such that $u \in S$. Let H' be the graph obtained from H by removing all leaves adjacent to u. Then $S - L_u$ is a 2-dominating set of H', $\ell' = \ell - |L_u|$ and $s' = s - 1$. Thus

$$\gamma_2(H) - |L_u| \geq \gamma_2(H') \geq (n(H') + \ell(H') - s(H'))/2 =$$

$$= (n(H) - |L_u| + \ell(H) - |L_u| - s(H) + 1)/2$$

and, therefore, $\gamma_2(H) > (n(H) + \ell(H) - s(H))/2$, a contradiction.

Thus we assume that every support vertex on C is not in S. If C is a triangle, that is $C = C_3$ then it is a simple task to check the result depending on whether C contains one, two or three support vertices. Thus we assume that the length of C is at least four. Let x be a support vertex and y, z its two neighbors on C. Let H' be the graph obtained from H by removing x and its leaves and by adding a new edge yz. Then $S - L_x$ is a 2-dominating set of H', $n(H') = n(H) - (|L_x| + 1)$, $\ell(H') = \ell(H) - |L_x|$ and $s(H') = s(H) - 1$.

It follows that
\[
\gamma_2(H) - |L_x| \geq \gamma_2(H') \geq (n(H') + \ell(H') - s(H'))/2 = \\
(n(H) - |L_x| - 1 + \ell(H) - |L_x| - s(H) + 1)/2
\]
and, therefore, \(\gamma_2(H) \geq (n(H) + \ell(H) - s(H))/2\), a contradiction.

The unicycle graph \(G\) formed by a cycle \(C\) where each vertex on \(C\) is adjacent to at least two leaves shows that the lower bound of Theorem 8 is attained. \(\square\)

Note that the lower bound in Theorem 8 is not valid for cactus graphs with at least two cycles. To see this, consider the graph \(G_k\) formed by \(k \geq 2\) cycles \(C_4\) by identifying a vertex from each cycle into one vertex. Then \(n(G_k) = 3k + 1, \ell = s = 0\) and \(\gamma_2(G) = k + 1 < (n(G_k) + \ell - s)/2 = (3k + 1)/2\).

3. UPPER BOUND

It is shown in [1] that the 2-domination number is bounded from below by the independence number for every tree \(T\). In this section we establish an upper bound for the 2-domination number in terms of the independence number and the number of support vertices, which gives a good framing for the 2-domination number in trees.

Theorem 1. If \(T\) is a tree of order at least three with \(s\) support vertices, then \(\gamma_2(T) \leq \beta(T) + s - 1\) and this bound is sharp.

Proof. We proceed by induction on the number of vertices of \(T\). If \(\text{diam}(T) = 2\) then \(T\) is a star \(K_{1,p}\) \((p \geq 2)\) where \(\gamma_2(T) = \beta(T) = p\) and \(s = 1\), so the result holds. If \(\text{diam}(T) = 3\) then \(T\) is a double star \(S_{p,q}\) with \(q \geq p\) where \(\gamma_2(T) = p + q\) if \(p \geq 2\) and \(\gamma_2(T) = q + 2\) otherwise, \(\beta(T) = p + q\) and \(s = 2\). Thus the result is valid. Assume that for every tree \(T'\) of order \(n'\) with \(n > n' > 3\), there is \(\gamma_2(T') \leq \beta(T') + s' - 1\).

Let \(T\) be a tree of order \(n\). Root \(T\) at a vertex \(r\) of maximum eccentricity \(\text{diam}(T) \geq 4\). Let \(v\) be a support vertex of maximum distance from \(r\) and \(u\) the parent of \(v\) in the rooted tree.

Let \(T' = T - (\{v\} \cup L_v)\). Since \(\text{diam}(T) \geq 4\), the order of \(T'\) is at least three. We consider two cases.

Case 1. \(\deg_T(v) \geq 3\). By Observation 2, \(\gamma_2(T) - |L_v| = \gamma_2(T'), \beta(T) - |L_v| = \beta(T')\) and \(s' \leq s\). Applying our induction to \(T'\), we obtain:

\[
\gamma_2(T) - |L_v| = \gamma_2(T') \leq \beta(T') + s' - 1 \leq \beta(T) - |L_v| + s - 1.
\]

Hence \(\gamma_2(T) \leq \beta(T) + s - 1\).

Case 2. \(\deg_T(v) = 2\). Then \(v\) is adjacent to exactly one leaf, say \(v'\), so \(|L_v| = 1\). We again consider two cases.

Case 2.1. \(\deg_T(u) = 2\). Then \(s' \leq s\), and by Observation 2, \(\gamma_2(T) - 1 = \gamma_2(T')\) and \(\beta(T) - 1 = \beta(T')\). Applying the inductive hypothesis to \(T'\), we obtain the desired inequality.
Case 2.2. \(\deg_T(u) \geq 3 \). Then \(s' = s - 1 \) and by Observation 2, \(\beta(T) - 1 = \beta(T') \).

Also \(\gamma_2(T) \leq \gamma_2(T') + 2 \), since every \(\gamma_2(T') \)-set can be extended to a 2-dominating set of \(T \) by adding \(\{v, v'\} \). By induction on \(T' \)

\[
\gamma_2(T) \leq \gamma_2(T') + 2 \leq \beta(T') + s' + 1 = (\beta(T) - 1) + (s - 1) + 1,
\]
hence \(\gamma_2(T) \leq \beta(T) + s - 1 \).

The upper bound is sharp for the path \(P_n \) of even order \(n \geq 4 \).

In [4], Favaron proved that every tree \(T \) of order \(n \) with \(\ell \) leaves satisfies \(\beta(T) \geq (n + \ell)/3 \). Using Lemma 7 and Theorem 1, we obtain the following corollary for the independence number, which in some sense improves Favaron’s one [4] for trees.

Corollary 2. If \(T \) is a tree of order at least 3 with \(\ell \) leaves and \(s \) support vertices, then \(\beta(T) \geq (n + \ell - 3s + 2)/2 \).

REFERENCES

Mustapha Chellali
m_chellali@yahoo.com

University of Blida
Department of Mathematics
B. P. 270, Blida, Algeria

Received: October 31, 2005.