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2-BIPLACEMENT WITHOUT FIXED POINTS
OF (p, q)-BIPARTITE GRAPHS

Abstract. In this paper we consider 2-biplacement without fixed points of paths and
(p, q)-bipartite graphs of small size. We give all (p, q)-bipartite graphs G of size q for which
the set S∗(G) of all 2-biplacements of G without fixed points is empty.
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1. TERMINOLOGY

For a bipartite graph G = (L,R;E) with the vertex set V (G) = L ∪R and the egde
set E(G) = E we denote by L = L(G) and R = R(G) the left and the right set of
bipartition of the vertex set of G, while the cardinality of the egde set by e(G). Note
that the graphs G = (L,R;E) and G′ = (R,L;E) are different.

We denote by N(x,G) the set of the neighbors of the vertex x in G. The degree
d(x,G) of the vertex x in G is the cardinality of the set N(x,G); ∆L(G)(δL(G)),
∆R(G)(δR(G)) and ∆(G)(δ(G)) are the maximum (minimum) of the vertex degree
in the set L(G), R(G) and V (G), respectively. A vertex x of G is called a pendent
if d(x,G) = 1. Kp,q stands for the complete bipartite graph with |L(Kp,q)| = p

and |R(Kp,q)| = q. A bipartite graph G is called (p, q)-bipartite if |L(G)| = p

and |R(G)| = q.

2. EMBEDDING WITHOUT FIXED POINTS OF GENERAL GRAPHS

Let G be a graph of order n. We say that graph G can be embedded in its complement
if there exits a permutation f on V (G) such that if an edge xy belongs to E(G), then
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f(x)f(y) does not belong to E(G). A permutation f will be called an embedding of
G (in its complement Kn \ G).

The following theorem was proved by D. Burns and S. Schuster. Theorem A is
a sufficient condition for a graph to be embeddable (with some exeptional graphs).

Theorem A ([1]). Let G = (V,E) be a graph of order n. If |E(G)| ≤ n − 1
then either G is embeddable or G is isomorphic to one of the following graphs:
K1,n−1,K1,n−4 ∪ K3, with n ≥ 8,K1 ∪ K3,K2 ∪ K3,K1 ∪ 2K2,K1 ∪ C4.

An embedding f of V (G) such that f(x) �= x for every x on V (G) is called an
embedding without fixed points.

Let G1 = K1,2 ∪ C3 and G2 = K1,3 ∪ C3. G1 and G2 are embeddable in their
complements (by Theorem A) but G1 and G2 cannot be embedded without fixed
points. All other graphs G with n vertices and n − 1 edges which are contained in
their complements can be embedded without fixed points.

S. Schuster proved the following theorem.

Theorem B ([5]). Let G = (V,E) be a graph of order n with |E(G)| ≤ n − 1 and
such that G is not an exceptional graph of Theorem A and G /∈ {G1, G2}. Then there
exists a fixed-point-free embedding of G.

3. 2-BIPLACEMENT WITHOUT FIXED POINTS OF BIPARTITE GRAPHS

If G = (L,R;E) and H = (L′, R′;E′) are two (p, q)-bipartite graphs then we say
that G and H are mutually placeable (into the complete bipartite graph Kp,q ) if
there is a bijection f : L ∪ R → L′ ∪ R′ such that f(L) = L′ and f(x)f(y) is not an
egde of H whenever xy is an egde of G. The function f is called a biplacement of G

and H. If H = G then we say that (p, q)-bipartite graph G is 2-biplaceable and the
function f is called a 2-biplacement of G. Richard Rado in [4] has proved a theorem in
traversal theory, which may be transformed into a necessary and sufficient condition
for two bipartite graphs to be mutually placeable. So, even if the mutual placement
of bipartite graphs, in the sense of the definition given above, has been introduced
in [3] (see also [2] and [6]), it is clear that the problem of mutual placeability of
bipartite graphs is at least ninety years old.

In this paper we shall consider 2-biplacement f of (p, q)-bipartite graph G

without fixed points i.e. f(x) �= x for every x in V (G).
We denote by S∗(G) the set of all 2-biplacements f of G such that f(x) �= x, for

every x in V (G). If f ∈ S∗(G) then we denote it briefly by f is w.f.p.
We shall present theorems which improve it by specyfying the structure of the

2-biplaceable permutation of bipartite graphs.
A. P. Wojda and J. L. Fouquet proved the following theorem, which is a bipartite

version of Theorem A.

Theorem C ([3]). Let G be a (p, q)-bipartite graph such that either p ≥ 3, q ≥ 3,
and e(G) ≤ p + q − 3 or p = 2, p ≤ q and e(G) ≤ p + q − 2. Then G is 2-biplaceable.
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Let Pn be a path of order n. Then Pn is (n
2 , n

2 )-bipartite graph — if n is even
and (n+1

2 , n−1
2 )-bipartite graph or (n−1

2 , n+1
2 )-bipartite graph — if n is odd. A path

Pn we shall denote by Pn
2 , n

2
and Pn+1

2 , n−1
2

or Pn−1
2 , n+1

2
, respectively.

If n ≤ 6 then Pn is not 2-biplaceable (into the complete bipartite graph).
For n = 7 (then P7 is (4, 3)-bipartite graph or (3, 4)-bipartite graph) there exists

a 2-biplacement of P7 but the set of all 2-biplacements of P7 without fixed points is
empty. A path Pn, for n ≥ 8 is 2-biplaceable (into an appropriate bipartite graph)
and there exits a 2-biplacement of Pn without fixed points. More precisely we shall
prove the following theorem.

Theorem 1. If k ≥ 4 then there exits 2-biplacement w.f.p. of path P2k in Kk,k and
path P2k+1 in Kk,k+1 (or in Kk+1,k).

If G = (L,R;E) is (p, q)-bipartite graph, 2 ≤ p ≤ q and e(G) = q then, by
Theorem C, G is 2-biplaceable. We give all (p, q)-bipartite graphs of size q and p ≤ q

for which S∗(G) = ∅.
If p = 2 and there are no isolated vertices in V (G) and isolated edges in E(G)

then S∗(G) �= ∅. Let H1(2, q) = K1,1 ∪ K1,q−1.
If p = 2 and ∆R(G) > 1 then the familly H2(2, q) is a set of (2, q)-bipartite

graphs of size q such that if L(G) = {a, b} and if l is number of vertices of degree 2
in R(G) then d(a,G) = l + 1 or d(b, G) = l + 1.

Let H1(3, q) be (3, q)-bipartite graph of size q, which contains K1,1 ∪ K1,q−1

as a subgraph, and let H2(3, q) be (3, q)-bipartite graph of odd size q, which has a
subgraph K1,1 ∪ K2, q−1

2
.

Observe S∗(H1(3, q)) = ∅ and S∗(H2(3, q)) = ∅.
We can now formulate our main result. Theorem 2 is a counterpart of Theorem B.

Theorem 2. Let G = (L, R;E) be (p, q)-bipartite graph, 2 ≤ p ≤ q and e(G) ≤ q.
Then either there exits 2-biplacement w.f.p. of G, or

(i) (p = 2 and (G = H1(2, q) or G ∈ H2(2, q))) or else

(ii) (p = 3 and (G = H1(3, q) or G = H2(3, q))).

4. PROOFS

We start with two easy remarks.

Remark 1. Let T = (L,R;E) be a (p, q)-tree and let e be an edge in E. If T \ {e} =
T1 ∪ T2 and T1, T2 2-biplaceable (into appropriate complete bipartite graphs) and
S∗(T1) �= ∅, S∗(T2) �= ∅, then T is 2-biplaceable (into Kp,q) and S∗(T ) �= ∅.

If y ∈ V (G) then let Uy = {x ∈ V (G) : x ∈ N(y, G) and d(x, G) = 1}.
Remark 2. Let G be a (p, q)-bipartite graph. If there is a vertex y such that
|Uy| ≥ 2 and G′ = G \ Uy is 2-biplaceable and S∗(G′) �= ∅, then G is 2-biplace-
able and S∗(G) �= ∅.
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4.1. PROOF OF THEOREM 1.

The proof is by induction on order of the path, say n. First, we assume that n = 2k,
k ≥ 4. We shall check the theorem for k = 4, 5, 6, 7.

For k = 4 we denote P8 = P4,4 and L(P4,4) = {1, 3, 5, 7}, R(P4,4) = {2, 4, 6, 8}
and P4,4 : 1−2−3−4−5−6−7−8. Let consider the path P ′

4,4 : 7−4−1−6−3−8−5−2
and define σP4,4 such that σ(1) = 7, σ(2) = 4, σ(3) = 1, σ(4) = 6, σ(5) = 3, σ(6) = 8,
σ(7) = 5, σ(8) = 2. Then we see σP4,4 is 2-biplacement w.f.p. of P .

For k = 5 we have:

P5,5 : 1 − 2 − 3 − 4 − 5 − 6 − 7 − 8 − 9 − 10,

P ′
5,5 : 3 − 6 − 1 − 10 − 7 − 4 − 9 − 2 − 5 − 8;

for k = 6:

P6,6 : 1 − 2 − 3 − 4 − 5 − 6 − 7 − 8 − 9 − 10 − 11 − 12,

P ′
6,6 : 7 − 4 − 1 − 10 − 3 − 8 − 11 − 2 − 5 − 12 − 9 − 6;

if k = 7 we may define:

P7,7 : 1 − 2 − 3 − 4 − 5 − 6 − 7 − 8 − 9 − 10 − 11 − 12 − 13 − 14,

P ′
7,7 : 7 − 4 − 1 − 10 − 13 − 8 − 3 − 6 − 11 − 14 − 9 − 2 − 5 − 12.

If k ≥ 8 then there exists e ∈ E(P2k) such that

P2k \ {e} = P k
2 , k

2
∪ P k

2 , k
2
, for k-even

and

P2k \ {e} = P k−1
2 , k−1

2
∪ P k+1

2 , k+1
2

, for k-odd.

By the induction hypothesis paths P k
2 , k

2
, P k−1

2 , k−1
2

and P k+1
2 , k+1

2
can be 2-

biplacaeble w.f.p. It is easy to complete this packing and obtain a 2–biplacement
w.p.f. of Pk,k by Remark 1.

Let n = 2k + 1, k ≥ 4. For k ≥ 8 we proceed as above. Now we verify the
theorem for 4 ≤ k ≤ 7.

For k = 4 we denote L(P4,5) = {2, 4, 6, 8}, R(P4,5) = {1, 3, 5, 7, 9}:

P4,5 : 1 − 2 − 3 − 4 − 5 − 6 − 7 − 8 − 9,

P ′
4,5 : 9 − 4 − 1 − 6 − 3 − 8 − 5 − 2 − 7;

for k = 5:

P5,6 : 1 − 2 − 3 − 4 − 5 − 6 − 7 − 8 − 9 − 10 − 11,

P ′
5,6 : 3 − 8 − 5 − 10 − 7 − 2 − 9 − 4 − 11 − 6 − 1;
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for k = 6:

P6,7 : 1 − 2 − 3 − 4 − 5 − 6 − 7 − 8 − 9 − 10 − 11 − 12 − 13,

P ′
6,7 : 5 − 10 − 7 − 12 − 9 − 2 − 11 − 4 − 13 − 6 − 1 − 8 − 3;

for k = 7:

P7,8 : 1 − 2 − 3 − 4 − 5 − 6 − 7 − 8 − 9 − 10 − 11 − 12 − 13 − 14 − 15,

P ′
7,8 : 5 − 10 − 7 − 12 − 9 − 14 − 11 − 2 − 13 − 4 − 15 − 6 − 1 − 8 − 3. �

4.2. PROOF OF THEOREM 2.

To prove Theorem 2, we shall need some additional definitions and notation.

Let H ′
1(p, 2) = K1,1 ∪ Kp−1,1 and p ≥ 3.

H′
2(p, 2) is a set of graphs (p, 2)-bipartite G of size p such that, if R(G) = {a, b} then

d(a,G) = l + 1 or d(b, G) = l + 1, l is the number of vertices of degree 2 in the set
L(G);

G = H ′
1(p, 3) ⇔ q = 3,K1,1 ∪ Kp−1,1 is a subgraph of G, e(G) = p;

G = H ′
2(p, 3) ⇔ q = 3,K1,1 ∪K p−1

2 ,2 is a subgraph of G, e(G) = p and p is odd.

Observe, that H ′
1(p, 2), H ′

1(p, 3), H ′
2(p, 3) and the family H′

2(p, 2) are obtained
from H1(2, q), H1(3, q), H2(3, q) and the family H2(2, q), respectively, by exchanging
the sides of corresponding graphs.

We shall give only the main idea of the proof, leaving to the reader long but
very easy verification of some details.

The proof is by induction on p + q. The result is obvious if p = 2 and q ≥ 2. It
is easy to check that the theorem is true for p = q = 3 and p = 3 and q = 4.

Now we assume p ≥ 3, q ≥ 4 and the theorem is true for (p′, q′)-bipartite graph
fulfilling the assumptions of the theorem and p′ + q′ < p + q. Let G = (L,R;E) be
(p, q)-bipartite graph, p ≤ q and e(G) = q.

We consider the following two cases.

Case 1. There is an isolated vertex in R. Let y ∈ R, d(y, G) = 0, y′ ∈ R

and d(y′, G) = ∆R(G).
We can apply induction to the graph G′ = G \ {y, y′} and if there exits σG′ -2-

-biplacement w.f.p. of G′, then σG such that,

σG(v) = σG′(v), for v ∈ V (G′),

σG(y) = y′,

σG(y′) = y,

define 2-biplacement w.f.p. of G.

2-biplacement Without Fixed Points of (p, q)-bipartite Graphs 273



Suppose that d(y′, G) = 2 and S∗(G′) = ∅. Observe that G′ �= H ′
1(p, 2) and

G′ /∈ H′
2(p, 2).

If G′ = H1(3, q − 2), then we have to consider a few simple cases.
If G′ = H2(3, q−2) then either G = H2(3, q) or S∗(G) �= ∅. For G′ = H ′

1(p, 3) we
have p = 3 and q = 5 and then either K1,1∪K2,2 ≤ G and G = H2(3, 5), or P3,3 ≤ G.

Finally, we observe that if G′ = H ′
2(p, 3) then p = 3 and G′ = H1(3, 3) and the

theorem is easy to check.

Case 2. There are no isolated vertices in R. Hence δR(G) = 1. The theorem is true
for p = q and qK1,1 = G, q ≥ 3.

If p < q or p = q and pK1,1 is not the subgraph of G then there are vertices y1,
y2 ∈ R such that N(y1, G) = N(y2, G). Let G′′ = G\{y1, y2}. G′′ is (p′′, q′′)-bipartite
graph, p′′ = p ≥ 3 and q′′ = q − 2 ≥ 2 and e(G′′) ≤ q − 2. Hence we can apply the
induction hypothesis to the graph G′′.

Observe that, if S∗(G′′) �= ∅ then, by Remark 2, S∗(G) �= ∅.
If G′′ is one of the exceptional graphs, then, by p ≥ 3 and δR(G′′) = 1, we

have to consider only the situation that G′′ = H1(3, q − 2). But in this case either
G = H1(3, q), or there exits 2-biplaceable G w.f.p. and the theorem is proved.
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