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0. INTRODUCTION

The problem of solving equations belongs to the most important questions in mathe-
matics. Practically, any part of mathematics deals with equations. Therefore, we can
consider algebraic, differential, integral, analytical and many other types of equations.
In our lecture we shall concentrate on topological approach to equations. What do
we mean by equations?

Let X be an arbitrary nonempty set and let f : X → X be a given function. By
the equation (with the left hand side f) we shall understand the following question:
is it true that there exists an element x ∈ X such that

f(x) = x. (0.1)

The equation (0.1) is given in a global form, because our function f maps X
into itself.

So let us assume that U is a nonempty subset of X and let f : U → X be a given
function. For such a function f , we shall consider the following equation

f(x) = x. (0.2)
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In both cases a point x̃ ∈ X (x̃ ∈ U) such that f(x̃) = x̃ is called a solution of (0.1)
(respectively (0.2)).

In this paper we shall say that equation (0.1) is given in a global form and (0.2)
is given in a local form.

We let:
S(f) = {x̃ ∈ X | f(x̃) = x̃} (0.3)

and respectively:
S(f) = {x̃ ∈ U | f(x̃) = x̃} (0.4)

Then S(f) is called the set of all solutions of (0.1) or (0.2), respectively.
Using topological methods, we are able to obtain the following types of results:

1) existence results, i.e., when the set S(f) is nonempty;

2) topological characterization of the set S(f), i.e., the cardinality of S(f) and the
topological structure of S(f) in the case if it is an infinite set;

3) localization of solutions, i.e., we are able to show a special subset A ⊂ X such
that S(f) ∩A �= ∅;

4) existence of special solutions, i.e., we are able to prove that for some equations it
is possible to obtain periodic solutions or solutions with the multiplicity bigger
than 1 and so on.

Note, that using topological methods, we don’t consider the problem of numerical
computation of solutions. Topological methods deal only with the qualitive part of
the theory of equations.

In what follows, we shall explain for what classes of topological spaces and for
what classes of mappings the results 1) – 4) are possible both for (0.1) and (0.2).

Finally, we would like to add that the aim of this paper is to survay current
results connected with the above mentioned problems. Some direct applications to
differential equations are presented in last section. For more complete information
see [M-15] and also monographs [M-1]–[M-14].

1. TOPOLOGICAL AND HOMOLOGICAL BACKGROUND

In what follows, we shall use the following notations:

(Rn, ‖·‖) – the euclidean n-dimensional space,
Bn = B(0, 1) – the open unit ball in R

n,

Kn = K(0, 1) – the closed unit ball in R
n,

Sn−1 =
{
x ∈ R

n | ‖x‖ = 1
}
– the unit sphere in R

n .

Let A ⊂ X be a subset of a metric space X, A is called a retract (a neighbourhood
retract) of X if there exists a continuous function r : X → A (r : U → A, where A ⊂ U
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and U is an open subset of X) such that r(x) = x, for every x ∈ A, then the map r
is called a retraction map. Note that if A is a retract of X then A is closed.

The notion of retract (neigbourhood retract) is strictly connected with the notion
of extension (neighbourhood extension).

Namely, we define:

1.1. A metric space (X, d) has an extension property (neighbourhood extension
property) provided for any metric space (Y, d1), for any closed B ⊂ Y and for any
continuous f : B → X there exists an extension f̃ : Y → X (f̃ : U → X, where
U is an open neighbourhood of B in Y ), i.e., f̃ is continuous and f̃(y) = f(y),
for every y ∈ B.

Let us recall the following two results:

Theorem 1.2 (Dugundji Extension Theorem). Let (E, ‖·‖) be a normed space
and C ⊂ E be a convex subset. Then C has an extension property.

Theorem 1.3. The unit sphere Sn in R
n+1 has neighbourhood extension property.

For better understanding the above notions, we shall list some properties:

1.4. If X has an extension property and Y is homeomorphic to X, then Y has
extension property (the same is true for the n.e.p.1)).

1.5. If X has an extension property (n.e.p.) and A is a retract of X, then A has
extension (n.e.p.) property.

1.6. If X has n.e.p. and U is an open subset of X, then U has n.e.p.

We shall use the following definition which originates from K. Borsuk.

Definition 1.7. A metric space (X, d) is called an absolute retract (written X ∈ AR)
iff X has an extension property; X is called an absolute neighbourhood retract (written
X ∈ ANR) provided X has n.e.p.

To understand beter how large the class of ANR-s (AR-s) is we recall

Proposition 1.8 ([M-3]).

1. X ∈ ANR if and only if there exists a normed space E and an open subset U of
E such that X is homeomorphic to a retract of U ,

2. X ∈ AR if and only if there exists a normed space E and a convex subset W of
E such that X is homeomorphic to a retract of W .

1) neighbourhood extension property
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In particular, any open subset in a normed space or any finite polyhedron is
an ANR-space; respectively any convex subset is an arbitrary normed space is an
AR-space.

The next notion strictly connected with the extension property is the notion of
homotopy. Let f, g : X → Y be two continuous mappings between metric spaces. We
shall say that f is homotopic to g (written f ∼ g) provided there exists a continuous
homotopy h : X × [0, 1] → Y such that:

h(x, 0) = f(x) for every x ∈ X,
h(x, 1) = g(x) for every x ∈ X.

In other words f ∼ g provided the map h : X×{0}∪X×{1} → Y defined as follows:

h(x, t) =

{
f(x) for t = 0,
g(x) for t = 1

can be extended over the cylinder X × [0, 1].
Note that if Y is a convex subset of a normed space (E, ‖·‖) then any two

mappings f, g : X → Y are homotopic (h(x, t) = (1 − t)f(x) + tg(x)).
A space Y is called contractible provided any two (continuous maps) f, g : X → Y

are homotopic. In another words X is contractible provided the identity map idX

over X is homotopic to a constans map. Note that any AR-space is contractible and
any ANR-space is locally contractible.

One can show that

CONVEX SETS ⊂ AR ⊂ CONTRACTIBLE SETS.

A compact nonempty set B is called an Rδ set provided there exists a decreasing
sequence Bn of compact contractible set such that:

Bn =
⋂
n

Bn.

For compact sets we have

CONVEX SETS ⊂ AR ⊂ CONTRACTIBLE SETS ⊂ Rδ.

For more details, we recommend: [M-2, M-3, M-4, M-10].

2. THE GLOBAL CASE

The most general (global) existence theorems are:

(i) the Banach contraction principle (see: [M-1, M-2, M-8, M-9, M-11]),

(ii) the Brouwer fixed point theorem (see: [M-1, M-6, M-8, M-10, 6]),

(iii) the Schauder fixed point theorem (see: [M-1, M-2, M-6, M-8, M-11, M-12, M-13]),
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(iv) the Lefschetz fixed point theorem (see: [M-5, M-7, M-10, M-14, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14, 15]).

Let (X, d) be a metric space. A map f : X → X is called contraction provided
there exists 0 ≤ α < 1 such that:

d(f(x), f(y)) ≤ αd(x, y) for every x, y ∈ X. (*)

Theorem 2.1 (Banach Contraction Principle). If (X, d) is a complete space and
f : X → X is a contraction map, then there exists exactly one solution of the equation:

f(x) = x.

Roughly speaking, we can say that that Theorem 2.1 holds true for a large class
of spaces (for an arbitrary complete metric space) and for sufficiently narrow class
of mappings (only for mappings satisfying (*)!).

In the Brouwer fixed point theorem we shall have an opposite situation.

Theorem 2.2 (Brouwer fixed point theorem). If f : Kn → Kn is a continuous
map, then the equation f(x) = x has a solution.

Of course, we don’t claim now that there exists exactly one solution.
In Theorem 2.2 the domain of our equation is a very special metric space. Below,

we shall try to replace Kn by some other metric spaces.
We start from the following:

Corollary 2.3. Assume that the metric space (X, d) is homeomorphic to Kn. If
f : X → X is a continuous map, then the equation f(x) = x has a solution.

To obtain Corollary 2.3 from Theorem 2.2 let us denote by h : X → Kn a ho-
meomorphism and let h : Kn → X be its inverse. Let f be a given continuous map
from X to X.

We have the following diagram

X
h−−−−→ Kn

f

� �g

X
h←−−−− Kn

in which g = h◦f ◦h. Then g is continuous and by using Theorem 2.1, we get a point
ũ ∈ Kn such that g(ũ) = ũ. Then we have

h(g(ũ)) = h(ũ).

Let us denote h(ũ) = x̃ ∈ X. Then we have
h (g(ũ)) = h

(
h

(
f
(
h(u)

)))
= f(x̃) = h(ũ) = x̃

and consequently x̃ is a solution of the equation f(x) = x.
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Our second observation is the following:

Corollary 2.4. Assume that A is a retract of Kn. If f : A→ A is a continuous map,
then the equation f(x) = x has a solution.

Consider the diagram
Kn r−−−−→ A

g


 
f

Kn i←−−−− A

in in which r is a retraction map, i is the inclusion map and g = i ◦ f ◦ r.
Now, the proof of Corollary 2.4 is strictly analogous to the proof of Corollary 2.3.

Theorem 2.5. The following statements are equivalent:

1. Sn is not contractible,

2. (Bohl) every continuous map f : Kn+1 → R
n+1 has at least one of the following

properties:

(i) the equation x = f(x) has a solution,

(ii) there is an x ∈ Sn such that x = λf(x), for some 0 < λ < 1

3. Brouwer fixed point theorem,

4. Sn is not a retract of Kn+1.

Proof. (1.) ⇒ (2.) Suppose for every x f(x) �= x and y �= tf(y), for all 0 < t < 1,
y ∈ Sn. Then y �= tf(y) also for t = 0 and, by our first hypothesis, for t = 1.

Let r : R
n+1 \{0} → Sn be the map x→ x

‖x‖ . Then H : Sn × [0, 1] → Sn defined
by:

H(y, t) =

{
r(y − 2tf(y)), 0 ≤ t ≤ 1

2 ,

r((2 − 2t)y − f((2 − 2t)y), 1
2 ≤ t ≤ 1

would show that Sn is contractible.
(2.) ⇒ (3.) The second possibility in (2) cannot occur, since f(Sn) ⊂ Kn+1.
(3.) ⇒ (4.) If there were a retraction r, then for the map x → −r(x) the res-

pective equation would have no solutions.
(4.) ⇒ (1.) Assume that h : Sn× [0, 1] → Sn is a homotopy such that h(y, 1) = y

and h(y, 0) = y0 ∈ Sn. Defining r : Kn+1 → Sn by

r(x) =

y0, ‖x‖ ≤ 1
2

h

(
x

‖x‖ , 2 ‖x‖ − 1
)
, ‖x‖ ≥ 1

2

would give a retraction Kn+1 onto Sn.
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Regarding Kn as the unit ball in R
n, it is natural to ask whether or not

Brouwer’s theorem is valid for the unit ball of every (possibly infinite-dimensional)
normed space. The answer is given in (see [M-8]):

Theorem 2.6. Let E be a normed space and let K be its closed unit ball. For each
continuous map f : K → K the equation f(x) = x has a solution if and only if E is
finite-dimensional.

It is an interesting question to specify a class of mappings for which Theorem 2.6
holds true for an arbitrary normed space. We should do it in the end part of this
section. For studying Brouwer’s fixed point theorem we recommend: [M-1, M-2, M-8,
M-9, M-10].

The result Theorem 2.5 (1) is a particular case of the more general theorem so
called Borsuk’s Theorem on Antipodes which can be formulated as follows:

Theorem 2.7 (Borsuk’s Theorem on Antipodes). If f : Sn−1 → Sn−1, n ≥ 1
is an odd continuous mapping, i.e., f(x) = −f(−x), then f is not homotopic to a
constant map.

It is well known that:

Theorem 2.8. The following statements are equivalent:

1) (Borsuk–Lusternik–Schnirelman) If A1, . . . , An+1 are closed subsets of Sn such
that Sn = A1 ∪ . . . An+1, then there exists i, 1 ≤ i ≤ n + 1 and a point x ∈ Sn

such that x ∈ Ai and (−x) ∈ Ai (the set Ai contains a pair of antipodal points).

2) (Borsuk) There is no odd continuous mapping f : Sn → Sn−1.

3) Borsuk’s Theorem on Antipodes.

4) (Borsuk–Ulam) If f : Sn → R
n is a continuous map, then there exists x ∈ Sn

such that f(x) = f(−x).
For more details concerning Theorem 2.5 and Theorem 2.6 we recommend [M-8]

(see also: [M-7, M-10, M-11, M-14]).
Finally, let us back to the problem of possible generalization of the Brouwer

fixed point theorem.
We shall say a continuous map f : X → Y is compact provided there exists a

compact subset K ⊂ Y such that f(X) ⊂ K. It was observed by Juliusz Paweł Schau-
der that the class of compact maps is proper for the above mentioned generalization.
Namely, we have:

Theorem 2.9 (Schauder fixed point theorem). Let X ∈ AR and f : X → X be
a compact map, then the equation

f(x) = x

has a solution.
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3. THE GLOBAL CASE. THE LEFSCHETZ FIXED POINT THEOREM

In 1923 S. Lefschetz formulated the famous fixed point theorem so called now the
Lefschetz fixed point theorem. Later, in 1928 H. Hopf gave a new proof of the
Lefschetz fixed point theorem for self-mappings of polyhedra. Let us remark that
Lefschetz formulated his theorem for compact manifolds. In 1967, A. Granas extend
the Lefschetz fixed point theorem to the case of absolute neighbourhood retracts. The
key to the proof of the theorem is the fact that all compact absolute neighbourhood
retracts are homotopically equivalent with polyhedra. Then the case of noncompact
absolute neighbourhood retracts was reduced to the compact case by using the
generalized trace theory introduced by L. Leray.

In the present section, we would like to present current results concerning this
theorem. We shall prove an abstract version of the Lefschetz fixed point theorem
(comp. Theorem (3.15)) from which we shall deduce not only well known results
but also some new results mainly connected with condensing and k-set contraction
mappings. Finally, relative versions of the Lefschetz fixed point theorem are discussed.

It is convenient to introduce the notion of Lefschetz number.
We shall consider the category of pairs of metric spaces and continuous mappings.

By a pair of spaces (X,X0) we understand a pair consisting of a metric space X and
one of its subsets X0. A pair of the form (X, ∅) will be identified with the space X.
By a map f : (X,X0) → (Y, Y0) we understand a continuous map f : X → Y such
that f(X0) ⊂ Y0. In what follows having a map of pairs

f : (X,X0) → (Y, Y0)

we shall denote by
fX : X → Y and fX0 : X0 → Y0

the respective mappings induced by f .
Let H be the Čech homology functor with compact carriers ([7] or [8]) and

coefficients in the field of rational numbers Q from the category of all pairs or spaces
and all maps between such pairs, to the category of graded vector spaces over Q and
linear maps of degree zero. Thus H(X,X0) = {Hq(X,X0)} is a graded vector space,
Hq(X,Xq) being the q-dimensional Čech homology with compact carriers of X. For
a map f : (X,X0) → (Y, Y0), H(f) is the induced linear map f∗ = {f∗q}, where
f∗q : Hq(X,X0) → Hq(Y, Y0).

A non-empty space X is called acyclic provided

(i) Hq(X) = 0 for all q ≥ 1,

(ii) Hq(X) ≈ Q.
Let u : E → E be an endomorphism of an arbitrary vector space. Let us put

N(u) = {x ∈ E | un(x) = 0, for some n}, where un is nth iterate of u and Ẽ =
E/N(u). Since u(N(u)) ⊂ N(u), we have the induced endomorphism ũ : Ẽ → Ẽ. We
call u admissible provided dim Ẽ < ∞. Let u = {uq} : E → E be an endomorphism
of degree zero of a graded vector space E = {Eq}.
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We call u a Leray endomorphism if:

(i) all uq are admissible,

(ii) almost all Ẽq are trivial.

For such u, we define the (generalized) Lefschetz number Λ(u) by putting

Λ(u) =
∑

q

(−1)q tr(ũq).

The following important property of the Leray endomorphisms is a consequence of
the well known formula tr(u ◦ v) = tr(v ◦ u) for trace.
Proposition 3.1. Assume that, in the category of graded vector spaces, the following
diagram commutes

E′ E′′

E′ E′′

u′ v
u′′

u

u

then, if u′ or u′′ is a Leray endomorphism, so is the other; and, in that case,
Λ(u′) = Λ(u′′).

An endomorphism u : E → E of a graded vector space E is called weakly-
nilpotent if for every q ≥ 0 and for every x ∈ Eq, there exists an integer n such
that un

q (x) = 0. Since, for a weakly-nilpotent endomorphism u : E → E, we have
N(u) = E, so

Proposition 3.2. If u : E → E is a weakly-nilpotent endomorphism, then Λ(u) = 0.

Let f : (X,X0) → (X,X0) be a map, f∗ : H(X,X0) → H(X,X0) is a Leray
endomorphism. For such f , we define the Lefschetz number Λ(f) of f by putting
Λ(f) = Λ(f∗). Clearly, if f and g are homotopic, f ∼ g, then f is a Lefschetz map
if and only if g is a Lefschetz map; and, in this case, Λ(f) = Λ(g).

Let us observe that if X is an acyclic space or in particular contractible then for
every f : X → X the endomorphism f∗ : H(X) → H(X) is a Leray endomorphism
and Λ(f∗) = 1.

Consequently, if X ∈ AR odr X is a convex subset in a normed space, then for
every continuous map f : X → X the Lefschetz number Λ(f) = Λ(f∗) = 1.

We have the following lemma (see: [3, 5]).

Lemma 3.3. Let f : (X,X0 → (X,X0) be a map of pairs. If two of those endomorphi-
sms f∗ : H(X,X0) → H(X,X0), (fX)∗ : H(X) → H(X), (fX0)∗ : H(X0) → H(X0)
are Leray endomorphisms, then so is the third; and in that case:

Λ(f∗) = Λ
(
(fX)∗

) − Λ
(
(fX0)∗

)
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or equivalently:
Λ(f) = Λ(fX) − Λ(fX0).

Definition 3.4. A continuous map f : X → X is called a Lefschetz map provided the
generalized Lefschetz number Λ(f) of f is well defined and Λ(f) �= 0 implies that the
set S(f) = {x ∈ X | f(x) = x} is nonempty.

In 1969, A. Granas ([8], see also [9]) proved:

Theorem 3.5. Let X ∈ ANR and let f : X → X be a continuous and compact map
(i.e., f(X) is a compact set), then f is a Lefschetz map.

To formulate the result proved in 1977 by R. Nussbaum ([12]) we need some
notations.

We shall need the following Kuratowski (or Hausdorff) (see [M-9, M-10, M-11])
measure of noncompactness. Let X be a complete metric space and A be a bounded
subset of X.

We let:

γ(A) = inf{r > 0 | there exists a finite covering of A by subsets of diameter at
most r}
or

γ(A) = inf{r > 0 | there exists a finite covering of A by open balls with radius r}.
We have the following properties:

3.6. 0 ≤ γ(A) ≤ δ(A), where δ(A) is the diameter of A,

3.7. γ(A ∪B) = max{γ(A), γ(B)},
3.8. γ(Nε(A)) ≤ γ(A) + 2ε, where Nε(A) = {x ∈ E | d(x,A) < ε},
3.9. γ(A) = 0 if and only if A is relatively compact,

3.10. If K1 ⊃ K2 ⊃ . . .Kn ⊃ . . ., where Kn is closed nonempty for any n and
limn→∞ γ(Kn) = 0, then K∞ =

⋂∞
n=1Kn is compact and nonempty.

Let f : X → X be a map and A ⊂ X be a subset of X. We shall say that A is
f -invariant (invariant under f) provided f(A) ⊂ CA.

For a map f : X → X a compact f -invariant subset A ⊂ X is called an attractor
provided for any open neighbourhood U of A in X and for every compact K ⊂ X
there exists n = nK such that fm(K) ⊂ U , for every m ≥ n = nK . In what follows
we shall denote family of mappings with compact attractor by CA.

Note that, if f : X → X has a compact attractor A, then S(f) ⊂ A.
A continuous mapping f : X → X is called condensing (k-set contraction) map

provided:

3.11. if γ(A) �= 0, then γ(f(A)) < γ(A), (γ(f(A)) ≤ k · γ(A) for some k ∈ [0, 1)),
where we have assumed that X is a complete metric space and A ⊂ X.
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Of course, any compact map is a k-set contraction map and any k-set contraction
map is a condensing map.

Theorem 3.12 ([3, 4, 11, 12]). Let U be an open subset of a Banach space E.
Assume further that f : U → U is a condensing map which has a compact attractor,
then f is a Lefschetz map.

Definition 3.13. Let f : X → X be a continuous map and X0 be a f-invariant subset
of X. We shall say that X0 absorbs compact sets provided for any compact set K ⊂ X
there exists a natural number n = nK such that fn(K) ⊂ X0. If for every point x ∈ X
there exists n = nx such that fn(x) ∈ X0, then we shall say that X0 absorbs points.

It is easy to prove the following:

Proposition 3.14. Assume that f : X → X is a continuous map and X0 is an open
subset of X which absorbs points. Then X0 absorbs compact sets.

For the proof see: [3]–[5]. Now, we are able to prove the following important
result:

Theorem 3.15 (Abstract version of the Lefschetz fixed point theorem). Let
f : (X,X0) → (X,X0) be a continuous map of pairs. Assume that fX0

: X0 → X0 is
a Lefschetz map and X0 absorbs compact sets. Then fX : X → X is a Lefschetz map.

Proof. First, we shall observe that f∗ : H(X,X0) → H(X,X0) is weakly nilpotent
and hence Λ(f) = Λ(f∗) = 0.

We let:

i : X0 → X, i(x) = x for every x ∈ X0,

H̃(X) = H(X)/N((fX)∗),

H̃(X0) = H(X0)/N((fX0
)∗),

ĩ∗ : H̃(X0) → H̃(X), ĩ∗([a]) = [i∗(a)] for every [a] ∈ H̃(X0).

Since the considered functor H has compact carriers and X0 absorbs compact sets we
deduce that ĩ∗ is an isomorphism. Consequently from the exactness of the homology
sequence for the pair (X,X0) we infer that H̃(X,X0) = 0. Thus Λ(f) = Λ(f∗) = 0
and from Lemma (3.3) we obtain:

Λ(f) = Λ(f∗) = 0.

By assumption fX0
: X0 → X0 is a Lefschetz map. Therefore, in view of Lemma

(3.3), we deduce that the Lefschetz number Λ(fX) of fX is well defined and

Λ(f) = 0 = Λ(fX) − Λ(fX0).

Now, if we assume that Λ(fX) �= 0, then Λ(fX0
) �= 0 and hence S(fX0

) �= ∅. The
proof is completed since S(fX0

) ⊂ S(fX).
In what follows all mappings are assumed to be continuous. Following [4] we

recall the notion of compact absorbing contractions (CAC).
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Definition 3.16. A mapping f : X → X is called CAC provided the following con-
ditions are satisfied:

1. there exists an open subset U of X such that f(U) ⊂ U and f(U) is compact,

2. the set U given in (1) absorbs points.

First, we are going to explain how large the class of CAC-mappings is. Evidently,
any compact map f : X → X is a CAC-mapping. In fact, the compact set f(X) is
an attractor of f and we can take X as an open neighbourhood U of f(X). More
generally, any eventually compact map, i.e., the map f : X → X such that there
exists n for which fn(X) is compact, has a compact attractor A to be equal fn(X).
It is also easy to see that any CAC-map has a compact attractor A, namely f(U)
(see Definition 3.16.1).

We shall say that a map f : X → X is asymptotically compact provided for each
x ∈ X the orbit {x, f(x), . . . , fn(x), . . .} is relatively compact and the core

Cf =
∞⋂

n=1

fn(X)

is nonempty compact.
As is observed in [4] (see Proposition 6.4) any asymptotically compact map

f : X → X has a compact attractor A to be equal Cf .
If follows from the above that:

Proposition 3.17.

1. Any compact map has a compact attractor,

2. any eventually compact map has a compact attractor,

3. any asymptotically compact map has a compact attractor.

So the class of mappings with compact attractors is quite large.
To explain the connection between mappings with compact attractors and CAC-

mappings we need one more notion.
A map f : X → X is called locally compact (LC-map) provided for every x ∈ X

there exists an open neighbourhood Ux of x in X such that f(Ux) is compact.
We have:

Proposition 3.18 (see [3]–[5]). Any locally compact map with compact attractor is
a CAC-mapping.

All obtained above information we can illustrate in the following

CA + LC ⊂ CAC ⊂ CA .

We recommend Theorems 4.7, 4.8 in [M-2, M-10, M-15], for further information
about considered classes of mappings.
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Let us mention the first application of Theorem 3.15:

Theorem 3.19. Let X ∈ ANR and f : X → X be a CAC-map. Then f is a Lefschetz
map.

Proof. Let f : X → X be a CAC-map, where X ∈ ANR. We choose an open subset
U ⊂ X according to the point 1 of Definition 3.16. Then f(U) ⊂ U and f(U) ⊂ U is
compact. Therefore, in view of (3.5), the map f̃ : U → U , f̃(x) = f(x) is a Lefschetz
map. Now our claim follows from the 2 of Definition 3.16, and Theorem 3.15.

Corollary 3.20. If X ∈ AR and f : X → X is a CAC-map, then S(f) �= ∅.
Open problem 3.21. Is Theorem 3.19 true for every CA-mapping f?

Now, we are going to discuss the Lefschetz fixed point theorem for condensing
mappings.

We prove the following:

Proposition 3.22. Let (X, d) be a complete bounded space and let f : X → X be
a condensing map. Then f is an asymptotically compact map, in particular f has a
compact attractor.

Proof. According to the Proposition 2 in [15] we have

lim
n→∞ γ(f

n(X)) = 0.

It implies, in view of 3.10, that the core

Cf =
∞⋂

n=1

fn(X)

is compact and nonempty.
Moreover, let O(x) = {x, f(x), f2(x), . . .} be an orbit of x ∈ X with respect

to f . Then we have: O(x) = {x} ∪ f(O(x)) and consequently, if we assume that
γ(O(x)) > 0, then we get:

γ(O(x)) = γ
(
f
(
O(x)

))
< γ(O(x)),

a contradiction. So f is asymptotically compact and therefore it has a compact
attractor.

Corollary 3.23. Let U be an open subset of a Banach space E and let f : U → U

be a condensing map. If there exists a closed bounded subset B of E such that
f(U) ⊂ B ⊂ U , then f has a compact attractor.

In fact, by applying (3.22) to f̃ : B → B, f̃(x) = f(x) for every x ∈ B, we get
(3.23).
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Now, from Theorem 3.12 and Corollary 3.23 we get:

Corollary 3.24. Let U and f : U → U be the same as in Corollary 3.23. Then f is
a Lefschetz map.

We need the following definition:

Definition 3.25. A complete, bounded metric space (X, d) is called a special ANR
(written X ∈ ANRs) provided there exists an open U of a Banach space E and two
continuous mappings r : U → X and s : X → U such that:

1. r ◦ s = idX ,

2. r and s are nonexpansive, i.e., γ(r(B)) ≤ γ(B) and γ(s(A)) ≤ γ(A) for arbitrary
two bounded sets A and B.

We are able to prove the following version of the Lefschetz fixed point theorem:

Theorem 3.26. Let X ∈ ANRs and let f : X → X be a condensing map. Then f is
a Lefschetz map.

Proof. From Proposition 3.22 we deduce that f has a compact attractor. Let U ,
r : U → X and s : X → U are according to Definition 3.25.

We define the map f̃ : U → U by putting:

f̃ = s ◦ f ◦ r.

In, view of 3.25.2., we deduce that f̃ is a condensing map. Observe that if A is a
compact attractor of f , then s(A) is a compact attractor f̃ (see: 3.25.2.). Consequently
f̃ : U → U is a condensing with compact attractor map. From the other hand we
have the following commutative diagram

U X

U X

f̃ f ◦ r f

s

s

Thus Λ(f) = Λ(f̃) and our theorem follows from Theorem 3.12.

Lemma 3.27. Let f : X → X be a map. Assume further that A is a compact attractor
for f and V is an open neighbourhood A in X. Then there exists an open neighbourhood
U of A in X such that:

1. f(U) ⊂ U ,
2. A ⊂ U ⊂ V .
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Proof. Let U =
⋂∞

n=0 f
−n(V ). Then f(U) ⊂ U and A ⊂ U . We only need to show

that U is an open subset of X. On the contrary, suppose that there exists a sequence
{xn} ⊂ X \U such that limn→∞ xn = x and x ∈ U . Let K = {xn} ∪ {x}. Then K is
a compact set and consequently there exists m such that f i(K) ⊂ V for all i ≥ m.
Hence xn ∈ ⋂∞

i=m f
−i(V ). But xn /∈ U so xn /∈

⋂∞
i=m f

−i(V ) and from the continuity
of f follows that x /∈ ⋂m

i=0 f
−i(V ) which contradicts the fact that x ∈ U .

A subset B ⊂ X is called nonexpansive retract provided there exists a continuous
map r : X → B such that:

(i) r(x) = x for every x ∈ B,
(ii) d(r(x), r(y)) ≤ d(x, y) for every x, y ∈ X.

We prove:

Theorem 3.28. Assume that X is nonexpansive retract of some open subset W in
a Banach space E. Assume further that f : X → X is CA-mapping with a compact
attractor A. If there exists an open neighbourhood V of A in X such that the restriction
f |V : V → X of f to V is a condensing map, then f is a Lefschetz map.

Proof. For the proof consider the following diagram

X W

X W

f f ◦ r i ◦ f ◦ r

i

i

in which r : W → X is the nonexpansive retraction and i : X → W is the inclusion
map. Let us put g = i ◦ f ◦ r.

From the commutativity of the above diagram it follows that f is a Lefschetz
map iff g is a Lefschetz map. Observe also that A is an attractor for g and moreover,
g|r−1(V ) : r−1(V ) → W is a condensing map. By applying Lemma (3.27) we get
an open subset U of W such that g̃ : U → U , g̃(u) = g(u) is a condensing map
with compact attractor A. Consequently it follows from Theorem 3.12 that g̃ is a
Lefschetz map.

Now, in view of (3.15), we deduce that g is a Lefschetz map and the proof is
completed.

Remark 3.29. Observe that any k-set contraction map is condensing, so The-
orems 3.26 and 3.28 remain true for k-set contraction mappings.

From the point of view of applications in dynamical systems the relative version
of the Lefschetz fixed point theorem is important (see: [1, 2, 8, 14]). In the relative
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version we get not only the existence of fixed points but also some information of their
localization. For the proof of the relative version instead of the Lefschetz number we
need the fixed point index for the appropriate class of mappings.

We shall follow the ideas contained in [1]. First we would like to remark the
following two facts:

3.30. the fixed point index is well defined for CAC-mappings on ANR-s (see [1]),

3.31. the fixed point index is well defined for condensing CA-mappings on open subset
of Banach spaces (see [12, 5]).

We have the following three versions of the relative Lefschetz fixed theorem:

Theorem 3.32 (comp. [7] or [1]). Let X0 ⊂ X and X,X0 ∈ ANR. Assume that
f : (X,X0) → (X,X0) is a map such that fX and fX0

are CAC-mappings. Then the
Lefschetz number Λ(f) of f is well defined and Λ(f) �= 0 implies that

S(f) ∩ (X \X0) �= ∅.
Theorem 3.33. Let W be an open subset of a Banach space E and W0 be an open
subset of W and let f : (W,W0) → (W,W0) be a mapping such that:

3.33.1. fW and fW0 are condensing mappings with compact attractors.

Then the Lefschetz number Λ(f) of f is well defined and Λ(f) �= 0 implies that

S(f) ∩ (W \W0) �= ∅.

Similarly, for k-set contraction mappings we get:

Theorem 3.34. Let W and W0 be the same as in Theorem 3.33 and f : (W,W0) →
(W,W0) be a mapping such that:

3.34.1. fW and fW0
are k-set contractions with relatively compact orbits.

Then the Lefschetz number Λ(f) of f is well defined and Λ(f) �= 0 implies that

S(f) ∩ (W \W0) �= ∅.

Note that the proof of Theorem 3.33 and 3.33 is strictly analogous to the proof
of Theorem 3.33 which is presented in full generality in [1].

Finally, let us add some concluding remarks. We would like to point out that
the following topics concerning the Lefschetz fixed point theorem are still possible:

(i) non metric case, i.e., for retracts of open sets in admissible spaces in the sense
of Klee (comp. [M-2, M-15]),

(ii) periodic fixed point theory (comp. [1, 2, M-15, M-2]),

(iii) the multivalued case (comp. [M-2, M-10, 4, 6]).
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4. THE LOCAL CASE

The problem of solving equations become much more complicated when we deal with
the local case. Assume that A is a subset of X and

f : A→ X

is a given function.
We would like to study the following equation

f(x) = x. (4.1)

Note that even in a very simple case the above equation may have no solutions.
Namely, let us consider the function f : [0, 1] → R given by f(x) = 1

2x+2. Evidently,
the equation

f(x) =
1
2
x+ 2 = x

has no solutions (in [0, 1]!) in spite of f being a contraction mapping.
Now, we are able to prove the following:

Theorem 4.1 (Local Version of the Banach Contraction Principle). Let (X, d)
be a complete space, f : B(x0, r) → X be a contraction, i.e.,

d(f(x), f(y)) ≤ αd(x, y),

where 0 ≤ α < 1 and x, y ∈ B(x0, r).
If d(f(x0), x0) < (1 − α)r, then (4.1) has a solution.

Proof. Let 0 ≤ s ≤ r be such that d(f(x0), x0) ≤ (1 − α) · s. Then we get that
f(K(x0, s)) ⊂ K(x0, s) and since K(x0, s) as a closed subset of a complete space
X is complete we infer, in view of the Banach contraction principle, that (4.1) has
a solution.

The general topological method to solve (4.1) was presented by L.E. J. Brouwer
in 1930 and later developed by J. Leray and J. P. Schauder. This method is called
the topological degree method or more generally the fixed point index method. Below
we will only sketch this method, for details see: [5, 7, 8, 9, 10].

Let X be an ANR-space and U its open subset. Let:

K(U,X) = {f : U → X | f is compact and S(f) is a compact subset of U}.

Definition 4.2. A function
Ind: K(U,X) → Z

is called the fixed point index on K(U,X), provided the following conditions are
satisfied:
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1. (Existence) If Ind(f) �= 0, then S(f) �= ∅.
2. (Unity) If f : U → X, f(x) = x0, is a constant map, then

Ind(f) =

{
1, if x0 ∈ U,
0, if x0 �∈ U.

3. (Additivity) If U = U1 ∪ U2, U1 ∩ U2 = ∅ and f |Ui
∈ K(Ui, X), i = 1, 2, then

Ind(f) = Ind(f |U1) + Ind(f |U2).

4. (Homotopy) If f, g ∈ K(U,X) are homotopic and there exists a joining compact
homotopy h : U × [0, 1] → X such that:

{x ∈ U | ∃t ∈ [0, 1], x = h(x, t)}

is compact, then
Ind(f) = Ind(g).

5. (Normalization) If f ∈ K(X,X), then

Ind(f) = Λ(f).

First of all, let us remark that such a function Ind which satisfies (1)–(5) is
unique.

Remark 4.3. Note that the fixed point index can be also defined for classes of
mappings larger than K(U,X) (comp. [10]), in particular, for compact absorbing
contractions of ANR-s and for condensing mappings of some particular ANR-s.

Now, having the fixed point index, in view of (1), we are able to answer when
the equation (4.1) has a solution. How to define the fixed point index? There are
two different approaches:

(i) homological (see: [M-5, M-7, M-10, M-15]),

(ii) analytical (see: [M-6, M-11, M-12, M-13, M-15]).

We would like to add that for many problems the axiomatic approach is sufficient.
Namely, if we assume that there exists a function Ind : K(U,X) → Z which satisfies
(1)–(5), then using this information we are able to solve quite a large class of
equations. Moreover, (1) and (5) show us that global results are special cases of the
local ones.

Having the fixed point index theory we are getting only an information that
there exists a solution of the equation:

x = f(x).
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Now, we want to know how many solutions has the above equation. In which order
we shall define so called the Nielsen number N (f) of f .

Assume that f : X → X is a CAC-mapping and X ∈ ANR. Let x1, x2 ∈ S(f).
We shall say that x1 is equivalent to x2 (written x1 ∼ x2) provided there exists a
path τ : [0, 1] → X such that τ is homotopic to f ◦ τ and there exists homotopy
h : [0, 1] × [0, 1] → X such that:

h(t, 0) = τ(t),

h(t, 1) = f(τ(t)),

h(0, s) = x1,

h(1, s) = x2,

for every s, t ∈ [0, 1]. It is easy to see that “∼” is an equivalence relation in the
set S(f). Since S(f) is a compact set one can show that the factor set S(f)/∼ is
finite.

Assume S(f)/∼ = {[x1], . . . , [xk]}. We shal l say that the class [xi] is essential
provided there exists an open set U ⊂ X such that:

y ∈ [xi], then y ∈ U,
S(f) ∩ ∂U = ∅

and

Ind(f ;U, x) �= ∅.

Then, we let
N (f) = #

{
[xi] | [xi] is essential

}
.

Then N (f) is called the Nielsen number of f .
We have:

Theorem 4.4. Let f, g : X → X be two CAC maps and X ∈ ANR. Then the
following two conditions are satisfied:

1. #S(f) ≥ N (f),

2. f ∼ g (f is homotopic to g in the fixed point index sense), then N (f) = N (g).

We recommend: [M-5, M-2, M-15] for more details concerning the Nielsen fixed
point theory.

5. EXAMPLES OF APPLICATIONS TO DIFFERENTIAL EQUATIONS

The aim of this section to show some examples how the topological fixed point theory
can be applied to differential equations.

We shall divide this section onto three parts.
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5.1. ARONSZAJN TYPE RESULTS

In this part we shall present results about the topological structure of the set of
solutions of the Cauchy problem for some nonlinear ordinary differential equations
as owed to N. Aronszajn in 1942.

First, we shall formulate a result proved by F.E. Browder and C.P. Gupta (see:
[M-2, M-10, 6]) in 1969.

Theorem 5.1. Let X be a space, (E, ‖·‖) a Banach space and f : X → E a proper
map, i.e., f is continuous and for every compact K ⊂ E the set f−1(K) is compact.
Assume further that for each ε > 0 a proper map fε : X → E is given and the following
two conditions are satisfied:

1. ‖fε(x) − f(x)‖ < ε, for every x ∈ X,

2. for any ε > 0 and u ∈ E such that ‖u‖ ≤ ε, the equation fε(x) = u has exactly
one solution.

Then the set S = f−1(0) is Rδ.

For the proof of this theorem see [M-10]. We recommend [6] and also [2] for
some generations of Theorem 5.1.

We need also some technical result originally formulated by S. Szufla in 1979
(see [M-10]) or [6].

Theorem 5.2. Let E = C([0, a],Rm) be the Banach space of continuous maps with
the usual max-norm and let X = K(0, r) = {u ∈ E | ‖u‖ ≤ r} be the closed ball in E.
If F : X → E is a compact map and f : X → E is a compact vector field associated
with F , i.e., f(u) = u− F (u), such that the following conditions are satisfied:

1. there exists an x0 ∈ R
m such that F (u)(0) = x0, for every u ∈ K(0, r),

2. for every ε ∈ [0, a] and for every u, v ∈ X if u(t) = v(t) for each t ∈ [0, ε], then
F (u)(t) = F (v)(t) for each t ∈ [0, ε],

then there exists a sequence fεn
: X → E of continuous proper mappings satisfying

the conditions (1) and (2) in Theorem 5.1 with respect to f , where εn = 1/n.

Sketch of proof. For the proof it is sufficient to define a sequence Fn : X → E of
compact maps such that

F (x) = lim
n→∞Fn(x), uniformly in x ∈ X, (i)

and
fn : X → E, fn(x) = x− Fn(x), is a one-to-one map. (ii)

To do this we additionally define the mappings rn : [0, a] → [0, a] by putting:

rn(t) =

{
0, t ∈ [0, a/n],

t− a

n
, t ∈ (a/n, a].
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Now, we are able to define the sequence {Fn} as follows:

Fn(x)(t) = F (x)(rn(t)) for x ∈ X, n = 1, 2, . . . . (iii)

It is easily seen that Fn is a continuous and compact mapping, n = 1, 2, . . .. Since
[rn(t) − t] ≤ a/n we deduce from the compactness of F and (iii) that

lim
n→∞Fn(x) = F (x), uniformly in x ∈ X.

Now, we shall prove that fn is a one-to-one map. Assume that for some x, y ∈ X we
have

fn(x) = fn(y).

This implies that
x− y = Fn(x) − Fn(y).

If t ∈ [0, a/n], then we have

x(t) − y(t) = F (x)(rn(t)) − F (y)(rn(t)) = F (x)(0) − F (y)(0).

Thus, in view of (1) on Theorems 5.2, we obtain

x(t) = y(t) for every t ∈
[
0,
a

n

]
.

Finally, by successively repeating the above procedure n times we infer that

x(t) = y(t) for every t ∈ [0, a].

Therefore, fn is a one-to-one map and the proof is completed.
Now, from Theorems 5.1 and 5.2 we obtain:

Corollary 5.3. Assume that f and F are as in Theorem 5.2. Then f−1(0) = S(F )
is an Rδ-set.

For a given map g : [0, a]×R
n → R

n and x0 ∈ R
n we shall consider the following

Cauchy problem {
x′(t) = g(t, x(t)),
x(0) = x0.

(5.1)

In our considerations g is a Carathéodory mapping. By a solution of (5.1) we shall
understand an absolutely continuous map x : [0, a] → R

n such that x′(t) = g(t, x(t))
for almost all t ∈ [0, a] and x(0) = x0. If the right hand side g is continuous, then
every solution x(·) is C1 regular and satisfies x′(t) = g(t, x(t)) for every t ∈ [0, a].

We denote by S(g, 0, x0) the set of all solutions of the Cauchy problem (5.1).

Theorem 5.4. Let g : [0, a]×R
n → R

n be an integrably bounded Carathéodory map-
ping. Then S(g, 0, x0) is Rδ.
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Proof. We define the integral operator

F : C([0, a],Rn) → C([0, a],Rn)

by putting

F (u)(t) = x0 +

t∫
0

g
(
r, u(r)

)
dr for every u and t. (5.2)

Then S(F ) = S(g, 0, x0). It is easy to see that F satisfies all the assumptions of
Theorem 5.2. Consequently we deduce Theorem 5.4 from Corollary 5.3 and the proof
is completed.

Now, let g be a Carathéodory map with linear growth, i.e., |g(t, x)| ≤ µ(t)(1+|x|),
where µ : [0, a] → R is a Lebesque integrable function. Assume further that u ∈
S(g, 0, x0). Then we have (cf. (5.2))

u(t) = F (u)(t) = x0 +

t∫
0

g
(
r, u(r)

)
dr, (5.3)

and consequently

‖u(t)‖ ≤ ‖x0‖ +

t∫
0

µ(r) dr +

t∫
0

µ(r) ‖u(r)‖ dr. (5.4)

Therefore, from the well known Gronwall inequality we obtain

‖u(t)‖ ≤ (‖x0‖ + γ
)
exp(γ) for every t,

where γ =
∫ a

0
µ(r) dr.

We define
g0 : [0, a] × R

n → R
n

by putting

g0(t, x) =

{
g(t, x), if ‖x‖ ≤M and t ∈ [0, a],
g(t,Mx/ ‖x‖), if ‖x‖ ≥M and t ∈ [0, a],

where M = (‖x0‖ + γ) exp(γ).

Proposition 5.5. If g is a Carathéodory map with linear growth, then:

1. g0 is Carathéodory and integrably bounded; and

2. S(g0, 0, x0) = S(g, 0, x0).

The proof of Proposition 5.5 is straightforward. Now, from Theorem 5.4 and
Propostion 5.5 we obtain immediately:
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Corollary 5.6. If g : [0, a]× R
n → R

n is a Carathéodory map and has linear growth
then S(g, 0, x0) is a Rδ-set.

Finally, let us recall the following classical result from the theory of ordinary
differential equations.

Theorem 5.7. If f : [0, a] × R
n → R

n is an integrably bounded, locally-measurable
Lipschitz map, then the set S(f, 0, x0) is a singleton for every x0 ∈ R

n.

Later we shall make use of the following:

Theorem 5.8. Let E be a normed space, X a metric space and F : E × X → E

a continuous (singlevalued) map such that for any compact subset A ⊂ X the closure
F (E ×A) of F (E × A) is a compact subset of E. Then the (multivalued) map
ϕ : X � E defined as follows

ϕ(x) = S
(
F (·, x))

is an u.s.c. mapping.

Proof. It follows from the Schauder Fixed Point Theorem that the set ϕ(x) is compact
and nonempty for every x ∈ X.

Let x0 ∈ X and let U be an open neighbourhood of ϕ(x0) in E. It is enough
to prove that there exists r > 0 such that for every x ∈ B(x0, r) we have ϕ(x) ⊂ U .
Assume to the contrary that for every n = 1, 2, . . . there exists xn ∈ B(x0, 1/n) and
yn ∈ S(

F (·, xn)
)
such that yn �∈ U .

We let A = {xn}. So, A = {xn}∪{x0}. Consequently, in view of our assertion, we
can assume that limn→∞ yn = y0. Then yn �∈ U and y0 ∈ S(

F (·, x0)
)

= ϕ(x0) ⊂ U ,
so we obtain a contradiction.

5.2. THE POINCARÉ TRANSLATION OPERATOR

In this section, we shall define the Poincaré translation operator along trajectories
of a differential equations ([M-2]).

This operator is useful in the qualitative study of both differential equations and
differential inclusions (comp. [M-2]).

We shall restrict our considerations to the periodic problem for ordinary diffe-
rential equations.

Let f : [0, a] × R
n → R

n be a continuous bounded function. We shall consider
the following periodic problem {

x′(t) = f(t, x(t)),
x(0) = x(a).

(5.5)

Let C([0, a],Rn) be the Banach space of continuous functions with the usual
maximum norm. For the Cauchy problem{

x′(t) = f(t, x(t)),
x(0) = x0

(5.6)
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by S(f ;x0) we shall denote the set of all solutions of (5.6). According to the Aronszajn
theorem, we know that S(f ;x0) is an Rδ-set.

We define a multivalued map

P : R
m � C([0, a],Rn)

by putting
P (x) = S(f ;x).

Let la : C([0, a],Rn) → R
n, la(x) = x(a) be the evaluation map.

So we have

R
n P

�C
(
[0, a],Rn

) la� R
n .

Then the (multivalued) map
Pa : R

n � R
n

defined as follows
Pa = la ◦ P

is called the Poincaré translation operator.

Remark 5.9. Observe that if (5.6) has exactly one solution, then Pa is single valued
operator as considered in [M-6, M-11].

In general Pa is multivalued admissible map in the sense of L. Górniewicz.
Consequently (see [6, M-10]) the fixed point index for Pa is well defined for any open
U ⊂ R

n such that Pa is fixed point free on the boundary ∂U of U in R
n.

Our first result is selfevident.

Proposition 5.10. Problem (5.5) has a solution iff there exists x ∈ R
n such that

x ∈ Pa(x).

So to study the periodic problem it is sufficient to apply the fixed point index
theory to Pa. Roughly speaking, if on some ball in R

n the fixed point index of Pa turns
out to be different from zero, then the problem (5.5) has solutions. Subsequently, by
using the classical Liapunov–Krasnoselskĭı guiding potential method we are able to
calculate the fixed point index of Pa.

Definition 5.11. A C1-map V : R
n → R is called a direct potential for the problem

(5.5) provided the following two conditions are satisfied:

(i) ∃ r0 > 0 ∀ ‖x‖ ≥ r0 gradV (x) �= 0,

(ii) 〈f(t, x), gradV (x)〉 ≥ 0,

for every x ∈ R
n such that ‖x‖ ≥ x0 and for every t ∈ [0, a], where gradV denote the

gradient of V and 〈·,·〉 is the inner product in R
n.
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It follows from (i) that the fixed point index Ind(id-gradV,B(r)) is well defined
on every ball with the radius r ≥ r0 and is always the same (by localization property
of the fixed point index).

So it enables us to define the index Ind(V ) of V by putting:

Ind(V ) = Ind(id− gradV,B(r)), r ≥ r0.

Now, we can formulate the following (see [1, M-10, M-11]).

Theorem 5.12. If the problem (5.5) has a quaiding function V with IndV �= 0, then
the fixed point index of Pa on B(r), r ≥ r0 is different from zero; consequently (5.5)
has a solution.

For more details and another generalizations see [M-2, M-10].

5.3. IMPLICIT DIFFERENTIAL EQUATIONS

The aim of this part is to show that, using the fixed point index theory as a tool,
many types of implicit differential equations can be reduced very easily to differential
inclusions without implicity. We shall show how to apply our method to:

(i) ordinary differential equations of first or higher order (e.g., the satellite equation),

(ii) hyperbolic differential equations,

(iii) elliptic differential equations.

First, we shall prepare the topological material needed in our applications. We
have the following (see: [M-2, M-10]).

Proposition 5.13. Let X ∈ ANR and g : X → X be a CAC map. Assume further
that the following conditions are satisfied:

1. the topological dimension dimS(g) of the solution set S(g) of g is equal to zero,

2. there exists an open U ⊂ X such that ∂U ∩ S(g) = ∅ and Ind(g, U) �= 0.

Then there exists a point z ∈ S(g) for which we have:

3. for every open neighbourhood Uz of z in X there exists an open neighbourhood
Vz of z in X such that Vz ⊂ Uz, ∂Vz ∩ S(g) = ∅ and Ind(g, Vz) �= 0.

Now, we are going to consider a more general situation. Namely, let Y be a space
such that for every y ∈ Y and for every open neighbourhood Uy of y in Y there
exists an open arcwise connected W ⊂ Y such that y ∈ W ⊂ Uy, X ∈ ANR and let
f : Y ×X → X be a compact map. In what follows we shall assume that f satisfies
the following condition:

∀y ∈ Y ∃Uy : Uy is open in X and Ind(fy, Uy) �= 0, (5.7)
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where fy : X → X is given by the formula fy(x) = f(y, x) for every x ∈ X. Observe
that in particular, if X is an absolute retract, then (5.7) holds automatically. We
associate with a map f : Y ×X → X satisfying the above conditions the following
multivalued map:

ϕf : Y � X, ϕf (y) = S(fy).

Then from (5.7) follows that ϕf is well defined. Moreover, we get:

Proposition 5.14. Under all of the above assumptions the map ϕf : Y � X is u.s.c.

Let us remark that, in general, ϕf is not a l.s.c. map.2) Below we would like
to formulate a sufficient condition which guarantees that ϕf has a l.s.c. selector. To
get it we shall add one more assumption. Namely, we assume that f satisfies the
following condition

∀y ∈ Y dimS(fy) = 0. (5.8)

Now, in view of (5.7) and (5.8), we are able to define the map ψf : Y → X by
putting ψf (y) = cl{z ∈ S(fy) | for z from condition 5.13 (1) is satisfied}, for every
y ∈ Y .

We prove the following:

Theorem 5.15. Under all of the above assumptions we have:

1. ψf is a selector of ϕf , i.e. ψf (x) ⊂ ϕf (x), for every x,

2. ψf is a l.s.c. map.

Proof. Since 5.15 (1) follows immediately from the definition we shall prove 5.15 (2).
To do it we let:

ηf : Y � X, ηf (y) = {x ∈ S(fy) | x satisfies 5.13 (3)}.

For the proof it is sufficient to show that ηf is l.s.c. Let U be an open subset of X and
let y0 ∈ Y be a point such that ηf (y0)∩U �= ∅. Assume further that x0 ∈ ηf (y0)∩U .
Then there exists an open neighbourhood V of x0 in X such that V ⊂ U and
Ind(fy0

, V ) �= 0. Since ϕf is an u.s.c. map and Y satisfies our assumptions, we can
find an open arcwise connected W in Y such that y0 ∈ W and for every y ∈ W we
have

S(fy) ∩ ∂V = ∅. (**)

Let y ∈ W and let σ : [0, 1] → W be an arc joining y0 with y, i.e., σ(0) = y0 and
σ(1) = y. We define a homotopy h : [0, 1] × V → X by putting: h(t, x) = f(σ(t), x).
Then it follows form (∗∗) that h is a well defined homotopy joining fy0

with fy
and hence we get: Ind(fy0

, V ) �= 0; so S(fy) ∩ V �= ∅ and our assertion follows from
Proposition 5.13.

2) A multivalued mapping ϕ : X � Y is called a lower semi continuous (l.s.c.) provided for
every open U in Y the set ϕ−1(U) = {x ∈ X | ϕ(x) ∩ U �= ∅} is open.
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Remark 5.16. Let us remark that the above results remain true for admissible
multivalued maps (cf. (5.8)); proofs are completely analogous.

Observe that condition (5.8) is quite restrictive. Therefore it is interesting to
characterize the topological structure of all mappings satisfying (5.3.4). We shall do
it in the case of Euclidean spaces (which+ is sufficient from the point of view of
our applications), but in fact it is possible for arbitrary smooth manifolds. Let A
be a closed subset of the Euclidean space R

m. By C(A × R
n,Rn) we shall denote

the Banach space of all compact (singlevalued) maps from A× R
n into R

n with the
usual supremum norm.

Let

D = {f ∈ C(A× R
n,Rn) | f satisfies (5.8) for Y = A and X = R

n}.
We have:

Theorem 5.17. The set D is dense in C(A× R
n,Rn).

Remark 5.18. In fact, one can easily prove that set D is residual in C(A×R
n,Rn).

Now, we shall show how to apply the results formulated

Ordinary differential equations of first order 5.19. We let Y = [0, 1] × R
n,

X = R
n and let f : Y ×X → X be a compact map. Then f satisfies condition (5.7)

automatically so we shall assume only (5.8). Let us consider the following equation:

x′(t) = f(t, x(t), x′(t)), (5.9)

where the solution is understood in the sense of almost everywhere t ∈ [0, 1] (a.e.,
t ∈ [0, 1]).

We shall associate with (5.9) the following two differential inclusions:

x′(t) ∈ ϕf (t, x(t)) (5.10)

and

x′(t) ∈ ψf (t, x(t)), (5.11)

where ϕf and ψf are defined earlier for f and by solution of (5.10) or (5.11) we
mean an absolutely continuous function which satisfies (5.10) (resp. (5.11)) in the
sense of a.e., t ∈ [0, 1]).

Denote by S(f), S(ϕf ) and S(ψf ) the set of all solutions of (5.9), (5.10) and
(5.11) respectively. Then we get:

S(ψf ) ⊂ S(f) = S(ϕf ). (5.12)

But in view of Theorem 5.15 the map ϕf is l.s.c., so (see [4] or [9]) we obtain

S(ψf ) �= ∅. (5.13)
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Thus we have proved:
∅ �= S(ψf ) ⊂ S(ϕf ) = S(f), (5.14)

Observe that in (5.10) and (5.11) the right side doesn’t depend on derivative.

Ordinary differential equations of higher order 5.20. We let Y = [0, 1] × R
kn,

X = R
n and let f : Y × X → X be a compact map. Then, similarily as in 5.19 f

satisfies (5.7) so we shall assume only (5.8). To study the existence problem for the
following equation:

x(k)(t) = f(t, x(t), x′(t), . . . , x(k)(t)) (5.15)

we consider the following two differential inclusions (cf. [1] or [13]):

x(k)(t) ∈ ϕf (t, x(t), x′(t), . . . , x(k−1)(t)) (5.16)
and

x(k)(t) ∈ ψf (t, x(t), x′(t), . . . , x(k−1)(t)). (5.17)

Then the existence problem for (5.15) can be reduced very easily to (5.16) or (5.17).

Hyperbolic equations 5.21. Now, let Y = [0, 1] × [0, 1] × R
3n, X = R

n and let
f : Y ×X → X be a compact map. Again it is easy to see that f satisfies (5.7) so
we shall assume (5.8). Now, let us consider the following hyperbolic equation

uts(t, s) = f(t, s, u(t, s), ut(t, s), us(t, s), uts(t, s)), (5.18)

where the solution u : [0, 1] × [0, 1] → R
n is understood in the sense of a.e., (t, s) ∈

[0, 1] × [0, 1].

As above we associate with (5.18) the following two differential inclusions:

uts(t, s) ∈ ϕf (t, s, u(t, s), ut(t, s), us(t, s)) (5.19)
and

uts(t, s) ∈ ψf (t, s, u(t, s), ut(t, s), us(t, s)). (5.20)

Then it is evident that the set of all solutions of (5.18) is equal to the set of all
solutions of (5.19) and every solution of (5.20) is a solution of (5.19). So inclusions
(5.19) and (5.20) give us full information about (5.18).

Elliptic differential equations 5.22. Let K(0, r) denotes the closed ball in R
n

with center at 0 and radius r. Now, we put Y = K(0, r) × R
2n, X = R

n and let
f : Y × X → X be a compact map. Since (5.7) is satisfied we assume only (5.8).
We consider the following elliptic equation:

∆(u)(z) = f(z, u(z), D(u)(z)), a.e., z ∈ K(0, r), (5.21)

where ∆ denotes the Laplace operator and D(u)(z) = uz1(z) + . . .+ uzn(z); z = {z1,
. . . , zn).
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Then we can consider the following two differential inclusions

∆(u)(z) ∈ ϕf (z, u(z), D(u)(z),∆(u)(z)) (5.22)

∆(u)(z) ∈ ψf (z, u(z), D(u)(z)). (5.23)

and we have exactly the same situation as in 5.21 or 5.20.

We shall end our applications by making the following three remarks.

Remark 5.23. Observe that all results of this section, except (5.8), remain true if
we replace the Euclidean space R

n by an arbitrary Banach space.

Remark 5.24. Let us observe if we replace (5.9), (5.15), (5.18) and (5.21) by the
respective differential inclusions then we get all results of this section without any
change.

Remark 5.25. We recommend [M-6] and [M-2] for some other applications of our
approach. In particular, for the case when f is not a compact map.
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[M-11] Krasnosel’skĭı M.A.: Topological Methods in the Theory of Nonlinear Integral
Equations. Gos. Izdat. Tehn.-Trov. Lit. Moscow 1956 (in Russian); Oxford,
Pergamon Press 1963 (English translation)

[M-12] Lloyd N.G.: Degree Theory. Cambridge, Cambridge Univ. Press 1978

[M-13] Rothe E.H.: Introduction to Various Aspects of Degree Theory in Banach
Spaces. Mathematical Surveys and Monographs, vol. 23, AMS, Providence,
R. I. 1986

[M-14] Spanier E.H.: Algebraic Topology. New York, McGraw-Hill 1966

[M-15] Brown R.F., Furi M., Górniewicz L., Jiang B.: Handbook of Topological Fixed
Point Theory. Dordrecht, Kluwer (to appear).

Articles

[1] Andres J., Jezierski J., Górniewicz L.: Relative versions of the multivalued
Lefschetz and Nielsen theorems and their application to admissible semi-flows.
Topol. Methods Nonlinear Anal. 16 (2000), 73–92; Periodic points of multi-
valued mappings with applications to differential inclusions. Top. and Appl.
127 (2003), 447–472

[2] Bowszyc C.: Fixed point theorem for the pairs of spaces. Bull. Polish Acad.
Sci. Math. 16 (1968), 845–851; 17 (1969), 367–372; On the Euler–Poincairé
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