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DIFFERENCE METHODS FOR INFINITE SYSTEMS

OF HYPERBOLIC FUNCTIONAL DIFFERENTIAL

EQUATIONS ON THE HAAR PYRAMID

Abstract. We consider the Cauchy problem for infinite system of differential functional

equations

∂tzk(t, x) = fk(t, x, z, ∂xzk(t, x)), k ∈ N.

In the paper we consider a general class of difference methods for this problem. We

prove the convergence of methods under the assumptions that given functions satisfy the

nonlinear estimates of the Perron type with respect to functional variables. The proof is

based on functional difference inequalities. We constructed the Euler method as an example

of difference method.
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1. INTRODUCTION

For any metric spaces X and Y we denote by C(X, Y ) the class of all continuous

functions from X into Y . Let N and Z denote the sets of natural numbers and

integers respectively. Denote by S∞ the set of all real sequences p = (pk)k∈N. For

p = (pk)k∈N ∈ S∞, p̄ = (p̄k)k∈N ∈ S∞ we write |p| = (|pk|)k∈N and p ≤ p̄ if pk ≤ p̄k

for k ∈ N. For p(m) = (p
(m)
k )k∈N ∈ S∞, m ∈ N and p = (pk)k∈N ∈ S∞ we put

lim
m→∞

p(m) = p if lim
m→∞

p
(m)
k = pk for all k ∈ N. Let E be the Haar pyramid

E =
{

(t, x) ∈ R1+n : t ∈ [0, a), x ∈ [−b + Mt, b − Mt]
}

85



86 Danuta Jaruszewska-Walczak

where a > 0, b = (b1, . . . , bn),M = (M1, . . . , Mn) ∈ Rn
+, R+ = [0, +∞) and bi > Mia,

i = 1, . . . , n. Write

Et =
((

[−r0, 0] × [−b, b]
)

∪ E
)

∩ ([−r0, t] × Rn) , 0 ≤ t < a,

and

St = [−b, b] for t ∈ [−r0, 0], St = [−b + Mt, b − Mt] for t ∈ (0, a),

where r0 ∈ R+. Let Ω = E × C(E0 ∪ E,S∞) × Rn and suppose that f : Ω → S∞,

f = (fk)k∈N, and ϕ : E0 → S∞ are given functions. For a function z : E0 ∪E → S∞,

z = (zk)k∈N, and for a point (t, x) ∈ E we write

∂tz(t, x) =
(

∂tzk(t, x)
)

k∈N
, f(t, x, z, ∂xz(t, x)) =

(

fk(t, x, z, ∂xzk(t, x))
)

k∈N

where ∂xzk = (∂x1
zk, . . . , ∂xn

zk), k ∈ N. We consider the Cauchy problem

∂tz(t, x) = f(t, x, z, ∂xz(t, x)), (1)

z(t, x) = ϕ(t, x) on E0. (2)

A function u : E0 ∪ E → S∞, u = (uk)k∈N, is called a classical solution of problem

(1), (2) if:

(i) uk is continuous on E0 ∪ E and it is class C1 on E for all k ∈ N,

(ii) u satisfies (1) on E and initial condition (2) holds.

The function f : Ω → S∞ is said to satisfy the Volterra condition if for each (t, x) ∈ E,

q = (q1, . . . , qn) ∈ Rn and for z, z̄ ∈ C(E0 ∪ E,S∞) such that z(τ, s) = z̄(τ, s) on

Et we have f(t, x, z, q) = f(t, x, z̄, q). Note that the Volterra condition means that

the value of f at the point (t, x, z, q) depends on (t, x, q) and on the restriction of

z to the set Et. We assume that f satisfies the Volterra condition and we consider

classical solutions of (1), (2).

A review of existence results for hyperbolic differential functional equations is

given in [2]. Infinite systems of hyperbolic functional inequalities and conditions on

uniqueness of classical solutions of problem (1), (2) are considered in [3].

In this paper we give a theorem on the convergence of the general one-step

difference methods for the problem (1), (2). It is a generalization of the methods

used in [4] and [5] on the case of infinite systems of differential functional equations.

2. FUNCTIONAL DIFFERENCE PROBLEMS

We formulate a difference problem corresponding to (1), (2). We denote by F(A, B)

the class of all functions defined on A and taking values in B, where A and B

are arbitrary sets. For x, x̄ ∈ Rn, x = (x1, . . . , xn), x̄ = (x̄1, . . . , x̄n), we write

x ∗ x̄ = (x1x̄1, . . . , xnx̄n). We define a mesh on the set E0 ∪ E in the following way.
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Suppose that (h0, h
′) = (h0, h1, . . . , hn) stand for steps of the mesh. For h = (h0, h

′)

and (i, m) ∈ Z
1+n where m = (m1, . . . , mn) we define nodal points as follows:

t(i) = ih0, x(m) =
(

x
(m1)
1 , . . . , x(mn)

n

)

= m ∗ h′.

Denote by ∆ the set of all h = (h0, h
′), hi > 0, 0 ≤ i ≤ n, such that there are

N = (N1, . . . , Nn) ∈ N
n, Ñ0 ∈ Z with the properties: Ñ0h0 = r0 and N ∗ h′ = b. We

assume that ∆ 6= ∅ and that there is a sequence {h(j)}, h(j) ∈ ∆, and limj→∞ h(j) = 0.

Let us fix h ∈ ∆. There is N0 ∈ N such that N0h0 < a ≤ (N0 + 1)h0. Let

R1+n
h =

{

(

t(i), x(m)
)

: (i, m) ∈ Z
1+n

}

and E0.h = E0 ∩ R1+n
h , Eh = E ∩ R1+n

h . We assume that h′ ≤ h0M . For a function

z : E0.h∪Eh → S∞ or for a function z : E0∪E → S∞ we write z(i,m) = z
(

t(i), x(m)
)

.

Put

Ei.h =
{

(

t(j), x(m)
)

∈ E0.h ∪ Eh : j ≤ i
}

.

and

E′

h =
{

(

t(i), x(m)
)

∈ Eh :
(

t(i) + h0, x
(m)

)

∈ Eh

}

.

The motivation for the definition of the set E′

h is the following. Approximate solutions

of problem (1), (2) are functions uh defined on Eh. We will write a difference system

generated by (1) at each point of the set E′

h. It follows from condition h′ ≤ h0M

that we calculate all the values of uh on Eh.

For 1 ≤ j ≤ n we write ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn, 1 standing on j-th place.

We define the difference operators δ0, δ = (δ1, . . . , δn) in the following way:

δ0w
(i,m) =

1

h0

(

w(i+1,m) − w(i,m)
)

, (3)

δjw
(i,m) =

1

hj

(

w(i,m) − w(i,m−ej)
)

for 1 ≤ j ≤ κ, (4)

δjw
(i,m) =

1

hj

(

w(i,m+ej ) − w(i,m)
)

for κ + 1 ≤ j ≤ n, (5)

where 1 ≤ κ ≤ n is a fixed natural number and w : E0.h ∪ Eh → R. Let Ωh =

= E′

h ×F(E0.h ∪Eh,S∞)×Rn and suppose that fh : Ωh → S∞, fh = (fh.k)k∈N, and

ϕh : E0.h → S∞ are given functions. For a point
(

t(i), x(m)
)

∈ E′

h we define

δ0z
(i,m) =

(

δ0z
(i,m)
k

)

k∈N
, fh

(

t(i), x(m), z, δz(i,m)
)

=
(

fh.k(t(i), x(m), z, δz
(i,m)
k )

)

k∈N

.
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We will approximate solutions of problem (1), (2) by means of solutions of the

problem

δ0z
(i,m) = fh

(

t(i), x(m), z, δz(i,m)
)

, (6)

z(i,m) = ϕ
(i,m)
h on E0.h (7)

where z = (zk)k∈N. The function fh is said to satisfy the Volterra condition if for

each (t(i), x(m)) ∈ E′

h, q ∈ Rn and for z, z̄ ∈ F(E0.h ∪ Eh,S∞) such that z = z̄ on

Ei.h we have fh

(

t(i), x(m), z, q
)

= fh

(

t(i), x(m), z̄, q
)

.

If fh satisfies the Volterra condition then relation h′ ≤ h0M implies that there

exists exactly one solution uh : E0.h ∪ Eh → S∞ of problem (6), (7).

We formulate general conditions for the convergence of the method (6), (7). Let

I = [0, a) and

Ih = {t(i) : 0 ≤ i ≤ N0}, I ′h = Ih \ {t(N0)}, I0.h = {t(i) : − Ñ0 ≤ i ≤ 0}.

For ω ∈ F(I0.h ∪ Ih,S∞) we write ω(i) = ω(t(i)).

Now we formulate the main assumptions on fh. First we introduce the following

one.

Assumption H [σh]. Suppose that σh : I ′h × F(I0.h ∪ Ih,S∞

+ ) → S∞

+ where

S∞

+ = {p = (pk)k∈N ∈ S∞ : pk ≥ 0, k ∈ N}, and σh satisfies the conditions:

1) σh is nondecreasing with respect to the functional variable and fulfils the Volterra

condition;

2) σh(t, θh) = 0 for t ∈ I ′h where θ
(i)
h = 0 for −Ñ0 ≤ i ≤ N0 and the difference

problem

η(i+1) = η(i) + h0σh

(

t(i), η
)

for 0 ≤ i ≤ N0 − 1, (8)

η(i) = 0 for − Ñ0 ≤ i ≤ 0, (9)

is stable in the following sense: if ηh is a solution of the problem

η(i+1) = η(i) + h0σh

(

t(i), η
)

+ h0γ(h) for 0 ≤ i ≤ N0 − 1, (10)

η(i) = α0(h) for − Ñ0 ≤ i ≤ 0 (11)

where γ, α0 : ∆ → S∞

+ and limh→0 γ(h) = 0, limh→0 α0(h) = 0, then there

exists a function β : ∆ → S∞

+ such that η
(i)
h ≤ β(h) for 0 ≤ i ≤ N0 and

limh→0 β(h) = 0.

In the sequel we will need the following operator

Vh : F(E0.h ∪ Eh,S∞) → F(I0.h ∪ Ih,S∞

+ ).
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If z : E0.h ∪ Eh → S∞, z = (zk)k∈N, then Vhz = (Vhzk)k∈N and

(Vhzk)(t(i)) = max
{∣

∣

∣z
(i,m)
k

∣

∣

∣ :
(

t(i), x(m)
)

∈ E0.h ∪ Eh

}

, −Ñ0 ≤ i ≤ N0.

Assumption H [fh, σh]. Suppose that fh = (fh.k)k∈N satisfies the Volterra

condition and:

1) the derivatives ∂qfh.k = (∂q1
fh.k, . . . , ∂qn

fh.k) exist on Ωh and ∂qfh.k(t, x, z, ·)
∈ C(Rn, Rn) where k ∈ N;

2) the estimates

∂qj
fh.k(P ) ≤ 0 for 1 ≤ j ≤ κ, ∂qj

fh.k(P ) ≥ 0 for κ + 1 ≤ j ≤ n

and

1 − h0

n
∑

j=1

1

hj

∣

∣∂qj
fh.k(P )

∣

∣ ≥ 0,

are satisfied for P = (t, x, z, q) ∈ Ωh, h ∈ ∆, k ∈ N;

3) Assumption H [σh] is satisfied and

|fh(t, x, z, q) − fh(t, x, z̄, q)| ≤ σh(t, Vh(z − z̄)) on Ωh. (12)

Now we formulate a general theorem on the convergence of the method (6), (7).

Theorem 1. Suppose that for all h ∈ ∆ Assumption H [fh, σh] is satisfied and:

1) the function uh : E0.h∪Eh → S∞ is a solution of problem (6), (7) and there exists

α0 : ∆ → S∞

+ such that
∣

∣

∣ϕ(i,m) − ϕ
(i,m)
h

∣

∣

∣ ≤ α0(h) on E0.h and limh→0 α0(h) = 0;

2) the function v : E0 ∪ E → S∞ is a classical solution of problem (1), (2);

3) there exists a function β̃ : ∆ → S∞

+ such that

∣

∣

∣fh(t(i), x(m), vh, δv
(i,m)
k ) − f(t(i), x(m), v, δv

(i,m)
k )

∣

∣

∣ ≤ β̃(h) on E′

h, (13)

and limh→0 β̃(h) = 0 where vh is the restriction of the function v to the set

E0.h ∪ Eh.

Then there exists a function γ̃ : ∆ → S∞

+ such that

∣

∣

∣u
(i,m)
h − v(i,m)

∣

∣

∣ ≤ γ̃(h) on Eh and lim
h→0

γ̃(h) = 0. (14)

Proof. Let the function Γh : E′

h → S∞, Γh = (Γh.k)k∈N, be defined by

v
(i+1,m)
k = v

(i,m)
k + h0fh.k

(

t(i), x(m), vh, δv
(i,m)
k

)

+ h0Γ
(i,m)
h.k on E′

h.
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It follows from (13) that there exists a function γ : ∆ → S∞

+ , γ = (γk)k∈N, such that
∣

∣

∣
Γ

(i,m)
h

∣

∣

∣
≤ γ(h) on E′

h and limh→0 γ(h) = 0. We define ωh : Ih → S∞

+ by

ωh = Vh(vh − uh)

We prove that ωh satisfies the difference functional inequality

ω
(i+1)
h ≤ ω

(i)
h + h0σh(t(i), ωh) + h0γ(h), 0 ≤ i ≤ N0 − 1. (15)

The following estimates hold for (t(i), x(m)) ∈ E′

h

∣

∣

∣(vj − uh.j)
(i+1,m)

∣

∣

∣ ≤

≤
∣

∣

∣(vj − uh.j)
(i,m) + h0

[

fh.j(t
(i), x(m), vh, δv

(i,m)
j ) − fh.j(t

(i), x(m), vh, δu
(i,m)
h.j )

]∣

∣

∣+

+h0

∣

∣

∣
fh.j(t

(i), x(m), vh, δu
(i,m)
h.j ) − fh.j(t

(i), x(m), uh, δu
(i,m)
h.j )

∣

∣

∣
+ h0γj(h) =

=
∣

∣

∣(vj − uh.j)
(i,m) + h0

κ
∑

ν=1

∂qν
fh.j(P

(i,m)
h.j )

1

hν

[(vj − uh.j)
(i,m) − (vj − uh.j)

(i,m−eν )]+

+h0

n
∑

ν=κ+1

∂qν
fh.j(P

(i,m)
h.j )

1

hν

[(vj − uh.j)
(i,m+eν) − (vj − uh.j)

(i,m)]
∣

∣

∣+

+h0σh.j(t
(i), ωh) + h0γj(h), j ∈ N

where P
(i,m)
h.j ∈ Ωh are intermediate points. It follows from condition 2) of Assump-

tions H [fh, σh] that

∣

∣

∣(vj − uh.j)
(i+1,m)

∣

∣

∣ ≤

≤

∣

∣

∣

∣

∣

(vj − uh.j)
(i,m)

[

1 − h0

n
∑

ν=1

∣

∣

∣
∂qν

fh.j(P
(i,m)
h.j )

∣

∣

∣

1

hν

]∣

∣

∣

∣

∣

+

+h0ω
(i)
h.j

n
∑

ν=1

1

hν

∣

∣

∣∂qν
fh.j(P

(i,m)
h.j )

∣

∣

∣ + h0σh.j

(

t(i), ωh

)

+ h0γj(h) ≤

≤ ω
(i)
h.j + h0σh.j(t

(i), ωh) + h0γj(h), j ∈ N.

The above estimates imply (15). It follows that the initial inequality ω
(i)
h ≤ α0(h),

−Ñ0 ≤ i ≤ 0, holds.

Let ηh : Io.h∪Ih → S∞

+ be the solution of (10), (11). It follows from Assumption

H [σh] that ω
(i)
h ≤ η

(i)
h on Ih. Now we obtain the assertion of Theorem 1 from the

stability of problem (8), (9).

In Theorem 1 we have assumed that the functions

sign∂qfh.k(P ) =
(

sign∂q1
fh.k(P ), . . . , sign∂qn

fh.k(P )
)

, k ∈ N,
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are constant on Ωh. This condition can be omited if we define difference operators

δ0, δ = (δ1, . . . , δn) in the following way:

δ0w
(i,m) =

1

h0



w(i+1,m) −
1

2n

n
∑

j=1

(

w(i,m+ej) + w(i,m−ej )
)



 (16)

and

δjw
(i,m) =

1

2hj

(

w(i,m+ej) − w(i,m−ej )
)

, 1 ≤ j ≤ n, (17)

where w : E0.h ∪ Eh → R. Consider the difference method (6), (7) with the above

given δ0 and δ.

Assumption H̃ [fh, σh]. Suppose that the functions fh and σh satisfy conditions

1) and 3) of Assumption H [fh, σh] and

1 − nh0
1

hj

∣

∣∂qj
fh.k(t, x, z, q)

∣

∣ ≥ 0 on Ωh

where 1 ≤ j ≤ n, k ∈ N.

Theorem 2. Suppose that for all h ∈ ∆ Assumption H̃[fh, σh] is satisfied and:

1) the function uh : E0.h ∪Eh → S∞ is a solution of problem (6), (7) with δ0 and δ

given by (16), (17), there exists α0 : ∆ → S∞

+ such that
∣

∣

∣ϕ(i,m) − ϕ
(i,m)
h

∣

∣

∣ ≤ α0(h)

on E0.h and limh→0 α0(h) = 0;

2) the function v : E0 ∪ E → S∞ is a classical solution of problem (1), (2);

3) there exists a function β̃ : ∆ → S∞

+ such that estimate (13) is satisfied and

limh→0 β̃(h) = 0.

Then there exists a function γ̃ : ∆ → S∞

+ such that conditions (14) are satisfied.

Proof. Let the function Γh : E′

h → S∞, Γh = (Γh.k)k∈N, be defined by

v
(i+1,m)
k =

1

2n

n
∑

j=1

(

v
(i,m+ej)
k + v

(i,m−ej)
k

)

+

+ h0fh.k

(

t(i), x(m), vh, δv
(i,m)
k

)

+ h0 Γ
(i,m)
h.k on E′

h.

It follows from (13) that there exists a function γ : ∆ → S∞

+ , γ = (γk)k∈N, such that
∣

∣

∣Γ
(i,m)
h

∣

∣

∣ ≤ γ(h) on E′

h and limh→0 γ(h) = 0. If zh = vh − uh, zh = (zh.k)k∈N and

ωh = Vh(zh) then the following inequalities are true on E′

h

∣

∣

∣z
(i+1,m)
h.k

∣

∣

∣ ≤

∣

∣

∣

∣

∣

∣

1

2n

n
∑

j=1

(

z
(i,m+ej)
h.k + z

(i,m−ej)
h.k

)

+
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+h0

n
∑

j=1

∂qj
fh.k

(

Q
(i,m)
h.k

) 1

2hj

[

z
(i,m+ej)
h.k − zh.k)(i,m−ej)

]

∣

∣

∣

∣

∣

∣

+

+h0σh.k(t(i), ωh) + h0γk(h) =

=
1

2n

∣

∣

∣

∣

∣

∣

n
∑

j=1

(z
(i,m+ej)
h.k

(

1 + nh0
1

hj

∂qj
fh.k

(

Q
(i,m)
h.k

) )

+

+

n
∑

j=1

z
(i,m−ej)
h.k

(

1 − nh0
1

hj

∂qj
fh.k

(

Q
(i,m)
h.k

) )

∣

∣

∣

∣

∣

∣

+ h0σh.k(t(i), ωh) + h0γk(h) ≤

≤ ω
(i)
h.k + h0σh.k(t(i), ωh) + h0γk(h), k ∈ N

where Q
(i,m)
h.k ∈ Ωh are intermediate points. Thus

ω
(i+1)
h.k ≤ ω

(i)
h.k + h0σh.k(t(i), ωh) + h0γk(h), k ∈ N

and the assertion of Theorem 2 follows in this same way as in the proof of Theorem 1.

3. THE EXAMPLE OF THE DIFFERENCE SCHEME

Now we assume that h′ = h0M and we consider functional differential problem (1),

(2) and the difference system

δ0z
(i,m) = f

(

t(i), x(m), Thz, δz(i,m)
)

, (18)

with the initial condition

z(i,m) = ϕ
(i,m)
h on E0.h (19)

where z = (zk)k∈N, Thz = (Thzk)k∈N and Th : F(E0.h ∪ Eh, R) → C(E0 ∪ E, R) is

the interpolating operator given in [1]. The operators δ0, δ are defined by (3)–(5)

where 1 ≤ κ ≤ n is given integer.

We will need the following operator V : C(E0 ∪ E,S∞) → C([−r0, a),S∞

+ ).

If z ∈ C(E0 ∪ E,S∞), z = (zk)k∈N then V z = (V zk)k∈N and

(V zk)(t) = max{|zk(t, x)| : (t, x) ∈ E0 ∪ E}, −r0 ≤ t < a, k ∈ N.

Assumption H [f, σ]. Suppose that the function f : Ω → S∞, f = (fk)k∈N, is

continuous, it satisfies the Volterra condition and:

1) there exists a continuous function σ : R+ × C([−r0, a),S∞

+ ) → S∞

+ such that:

(i) σ is nondecreasing with respect to both variables, satisfies the Volterra

condition and σ(t, θ) = 0 for t ∈ R+ where θ(t) = 0 on [−r0, a),
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(ii) the problem

ω′(t) = σ(t, ω), ω(t) = 0 on [−r0, 0]

is stable and ω̄(t) = 0 for t ∈ R+ is the maximum solution of it;

2) for (t, x, q) ∈ E × Rn, z, z̄ ∈ C(E0 ∪ E,S∞) we have

|f(t, x, z, q) − f(t, x, z̄, q)| ≤ σ
(

t, V (z − z̄)
)

; (20)

3) the derivatives ∂qfk = (∂q1
fk, . . . , ∂qn

fk) exist on Ω and ∂qfk(t, x, z, ·) ∈
∈ C(Rn, Rn) where k ∈ N;

4) the estimates

1 − h0

n
∑

j=1

1

hj

∣

∣∂qj
fk(P )

∣

∣ ≥ 0 (21)

and

∂qj
fk(P ) ≤ 0 for 1 ≤ j ≤ κ, (22)

∂qj
fk(P ) ≥ 0 for κ + 1 ≤ j ≤ n (23)

are satisfied for P = (t, x, z, q) ∈ Ω, h ∈ ∆ and k ∈ N.

Theorem 3. Suppose that Assumption H [f, σ] is satisfied and:

1) for h ∈ ∆ the function uh : E0.h ∪ Eh → S∞ is a solution of problem (18), (19)

with δ0, δ given by (3)–(5);

2) v : E0 ∪ E → S∞, v = (vk)k∈N, is a solution of (1), (2), vk is of class C1 on

E0 ∪ E and it is of class C2 on E for all k ∈ N;

3) the derivatives of the second order of vk are bounded on E, k ∈ N;

4) there exists a function α0 : ∆ → S∞

+ such that
∣

∣

∣
ϕ

(i,m)
h − ϕ(i,m)

∣

∣

∣
≤ α0(h) on E0.h

and limh→0 α0(h) = 0.

Then there is a number ε0 > 0 and a function γ̃ : ∆ → S∞

+ such that we have for

|h| < ε0
∣

∣

∣u
(i,m)
h − v(i,m)

∣

∣

∣ ≤ γ̃(h) on Eh (24)

and limh→0 γ̃(h) = 0.

Proof. We prove that the function

fh(t, x, z, q) = f(t, x, Thz, q), (t, x, z, q) ∈ Ωh,

satisfies all the assumptions of Theorem 1.
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Let Lh0
: F(I0.h ∪ Ih,S∞) → C([−r0, a),S∞) be the operator given for η : I0.h ∪

∪Ih → S∞, η = (ηk)k∈N, by Lh0
η = (Lh0

ηk)k∈N and

(Lh0
ηk)(t) = η

(i+1)
k

t − t(i)

h0
+ η

(i)
k

(

1 −
t − t(i)

h0

)

for t(i) ≤ t ≤ t(i+1)

where −Ñ0 ≤ i ≤ N0 − 1 and

(Lh0
ηk)(t) = (Lh0

ηk)(t(N0)) for t(N0) ≤ t < a.

Define σh : I ′h × F(I0.h ∪ Ih,S∞

+ ) → S∞

+ by

σh(t, w) = σ(t, Lh0
w). (25)

Assumption (20) implies the estimates

|fh(t, x, z, q) − fh(t, x, z̄, q)| = |f(t, x, Thz, q) − f(t, x, Thz̄, q)| ≤

≤ σ
(

t, V (Thz − Thz̄)
)

= σh(t, Vh(z − z̄)) on Ωh,

which proves condition (12). It follows that the consistency condition (13) is satisfied

(see Lemma 3.5 in [1]). We prove that the difference problem

η(i+1) = η(i) + h0σh(t(i), η) for 0 ≤ i ≤ N0 − 1, (26)

η(i) = 0 for − Ñ0 ≤ i ≤ 0, (27)

is stable in the sense of Assumption H [σh]. Let ηh : I0.h ∪ Ih → S∞

+ be a solution of

problem

η(i+1) = η(i) + h0σh(ti, η) + h0γ(h) for 0 ≤ i ≤ N0 − 1, (28)

η(i) = α0(h) for − Ñ0 ≤ i ≤ 0, (29)

where γ, α0 : ∆ → S∞

+ and limh→0 γ(h) = 0, limh→0 α0(h) = 0. The above problem

is equivalent to

η(i+1) = η(i) + h0σ(ti, Lh0
η) + h0γ(h) for 0 ≤ i ≤ N0 − 1, (30)

η(i) = α0(h) for − Ñ0 ≤ i ≤ 0. (31)

Let ωh : [−r0, a) → S∞

+ , ωh = (ωh.k)k∈N, be the maximum solution of the problem

ω′(t) = σ(t, ω) + γ(h), ω(t) = α0(h) for t ∈ [−r0, 0].

There exists ε0 > 0 such that the solution ωh is defined on [0, a) for |h| < ε0 and

lim
h→0

ωh(t) = 0 uniformly on [0, a).
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The functions ωh.k, k ∈ N, are convex on [0, a), therefore we have

ω
(i+1)
h ≥ ω

(i)
h + h0σ

(

t(i), ωh

)

+ h0γ(h) for 0 ≤ i ≤ N0 − 1.

Since ηh satisfies conditions (30), (31) and η
(i)
h = ω

(i)
h , −Ñ0 ≤ i ≤ 0 then we have

η
(i)
h ≤ ω

(i)
h for 0 ≤ i ≤ N0, which completes the proof of the stability of problem

(26), (27). It follows from Theorem 1 that there is γ̃ : ∆ → S∞

+ such that estimation

(24) is satisfied and limh→0 γ̃(h) = 0. This proves the Theorem 3.

Now we consider the equation 18 with the initial condition 19 where the operators

δ0, δ = (δ1, . . . , δn) are given by (16), (17).

Assumption H’ [f, σ]. Suppose that conditions 1)–3) of Assumption H [f, σ]

are satisfied and the estimates

1 − nh0
1

hj

∣

∣∂qj
fk(t, x, z, q)

∣

∣ ≥ 0, for 1 ≤ j ≤ n, k ∈ N, h ∈ ∆, (32)

hold on Ω.

Theorem 4. Suppose that Assumption H’ [f, σ] is satisfied and:

1) the function uh : E0.h ∪ Eh → S∞ is a solution of problem (18), (19) with δ0, δ

given by (16), (17);

2) conditions 2)–4) of Theorem 3 hold.

Then there is a number ε0 > 0 and a function γ̃ : ∆ → S∞

+ such that we have for

|h| < ε0
∣

∣

∣u
(i,m)
h − v(i,m)

∣

∣

∣ ≤ γ̃(h) on Eh (33)

and limh→0 γ̃(h) = 0.

The proof of the above Theorem is analogous to Theorem 3. Details are omitted.
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