Opuscula Math. 38, no. 6 (2018), 819-827

Opuscula Mathematica

Zig-zag facial total-coloring of plane graphs

Július Czap
Stanislav Jendroľ
Margit Voigt

Abstract. In this paper we introduce the concept of zig-zag facial total-coloring of plane graphs. We obtain lower and upper bounds for the minimum number of colors which is necessary for such a coloring. Moreover, we give several sharpness examples and formulate some open problems.

Keywords: plane graph, facial coloring, total-coloring, zig-zag coloring.

Mathematics Subject Classification: 05C10, 05C15.

Full text (pdf)

Opuscula Mathematica - cover

Cite this article as:
Július Czap, Stanislav Jendroľ, Margit Voigt, Zig-zag facial total-coloring of plane graphs, Opuscula Math. 38, no. 6 (2018), 819-827, https://doi.org/10.7494/OpMath.2018.38.6.819

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.