Opuscula Mathematica
Opuscula Math. 37, no. 4 (), 557-566
http://dx.doi.org/10.7494/OpMath.2017.37.4.557
Opuscula Mathematica

A note on incomplete regular tournaments with handicap two of order n≡8(mod 16)


Abstract. A \(d\)-handicap distance antimagic labeling of a graph \(G=(V,E)\) with \(n\) vertices is a bijection \(f:V\to \{1,2,\ldots ,n\}\) with the property that \(f(x_i)=i\) and the sequence of weights \(w(x_1),w(x_2),\ldots,w(x_n)\) (where \(w(x_i)=\sum_{x_i x_j\in E}f(x_j)\)) forms an increasing arithmetic progression with common difference \(d\). A graph \(G\) is a \(d\)-handicap distance antimagic graph if it allows a \(d\)-handicap distance antimagic labeling. We construct a class of \(k\)-regular \(2\)-handicap distance antimagic graphs for every order \(n\equiv8\pmod{16}\), \(n\geq56\) and \(6\leq k\leq n-50\).
Keywords: incomplete tournaments, handicap tournaments, distance magic labeling, handicap labeling.
Mathematics Subject Classification: 05C78.
Cite this article as:
Dalibor Froncek, A note on incomplete regular tournaments with handicap two of order n≡8(mod 16), Opuscula Math. 37, no. 4 (2017), 557-566, http://dx.doi.org/10.7494/OpMath.2017.37.4.557
 
Download this article's citation as:
a .bib file (BibTeX), a .ris file (RefMan), a .enw file (EndNote)
or export to RefWorks.

RSS Feed

horizontal rule

ISSN 1232−9274, e-ISSN 2300−6919, DOI http://dx.doi.org/10.7494/OpMath
Copyright © 2003−2017 OPUSCULA MATHEMATICA
Contact: opuscula@agh.edu.pl
Made by Tomasz Zabawa

horizontal rule

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.