Opuscula Math. 37, no. 4 (2017), 491-500

Opuscula Mathematica

Colourings of (k-r,k)-trees

M. Borowiecki
H. P. Patil

Abstract. Trees are generalized to a special kind of higher dimensional complexes known as \((j,k)\)-trees ([L. W. Beineke, R. E. Pippert, On the structure of \((m,n)\)-trees, Proc. 8th S-E Conf. Combinatorics, Graph Theory and Computing, 1977, 75-80]), and which are a natural extension of \(k\)-trees for \(j=k-1\). The aim of this paper is to study\((k-r,k)\)-trees ([H. P. Patil, Studies on \(k\)-trees and some related topics, PhD Thesis, University of Warsaw, Poland, 1984]), which are a generalization of \(k\)-trees (or usual trees when \(k=1\)). We obtain the chromatic polynomial of \((k-r,k)\)-trees and show that any two \((k-r,k)\)-trees of the same order are chromatically equivalent. However, if \(r\neq 1\) in any \((k-r,k)\)-tree \(G\), then it is shown that there exists another chromatically equivalent graph \(H\), which is not a \((k-r,k)\)-tree. Further, the vertex-partition number and generalized total colourings of \((k-r,k)\)-trees are obtained. We formulate a conjecture about the chromatic index of \((k-r,k)\)-trees, and verify this conjecture in a number of cases. Finally, we obtain a result of [M. Borowiecki, W. Chojnacki, Chromatic index of \(k\)-trees, Discuss. Math. 9 (1988), 55-58] as a corollary in which \(k\)-trees of Class 2 are characterized.

Keywords: chromatic polynomial, partition number, colouring, tree.

Mathematics Subject Classification: 05C75.

Full text (pdf)

Opuscula Mathematica - cover

Cite this article as:
M. Borowiecki, H. P. Patil, Colourings of (k-r,k)-trees, Opuscula Math. 37, no. 4 (2017), 491-500, http://dx.doi.org/10.7494/OpMath.2017.37.4.491

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.