Opuscula Mathematica
Opuscula Math. 37, no. 3 (), 421-434
http://dx.doi.org/10.7494/OpMath.2017.37.3.421
Opuscula Mathematica

Positive solutions of a singular fractional boundary value problem with a fractional boundary condition



Abstract. For \(\alpha\in(1,2]\), the singular fractional boundary value problem \[D^{\alpha}_{0^+}x+f\left(t,x,D^{\mu}_{0^+}x\right)=0,\quad 0\lt t\lt 1,\] satisfying the boundary conditions \(x(0)=D^{\beta}_{0^+}x(1)=0\), where \(\beta\in(0,\alpha-1]\), \(\mu\in(0,\alpha-1]\), and \(D^{\alpha}_{0^+}\), \(D^{\beta}_{0^+}\) and \(D^{\mu}_{0^+}\) are Riemann-Liouville derivatives of order \(\alpha\), \(\beta\) and \(\mu\) respectively, is considered. Here \(f\) satisfies a local Carathéodory condition, and \(f(t,x,y)\) may be singular at the value 0 in its space variable \(x\). Using regularization and sequential techniques and Krasnosel'skii's fixed point theorem, it is shown this boundary value problem has a positive solution. An example is given.
Keywords: fractional differential equation, singular problem, fixed point.
Mathematics Subject Classification: 26A33, 34A08, 34B16.
Cite this article as:
Jeffrey W. Lyons, Jeffrey T. Neugebauer, Positive solutions of a singular fractional boundary value problem with a fractional boundary condition, Opuscula Math. 37, no. 3 (2017), 421-434, http://dx.doi.org/10.7494/OpMath.2017.37.3.421
 
Download this article's citation as:
a .bib file (BibTeX), a .ris file (RefMan), a .enw file (EndNote)
or export to RefWorks.

RSS Feed

horizontal rule

ISSN 1232−9274, e-ISSN 2300−6919, DOI https://doi.org/10.7494/OpMath
Copyright © 2003−2017 OPUSCULA MATHEMATICA
Contact: opuscula@agh.edu.pl
Made by Tomasz Zabawa

horizontal rule

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.