Opuscula Mathematica
Opuscula Math. 37, no. 3 (), 381-388
http://dx.doi.org/10.7494/OpMath.2017.37.3.381
Opuscula Mathematica

On the uniform perfectness of equivariant diffeomorphism groups for principal G manifolds


Abstract. We proved in [K. Abe, K. Fukui, On commutators of equivariant diffeomorphisms, Proc. Japan Acad. 54 (1978), 52-54] that the identity component \(\text{Diff}\,^r_{G,c}(M)_0\) of the group of equivariant \(C^r\)-diffeomorphisms of a principal \(G\) bundle \(M\) over a manifold \(B\) is perfect for a compact connected Lie group \(G\) and \(1 \leq r \leq \infty\) (\(r \neq \dim B + 1\)). In this paper, we study the uniform perfectness of the group of equivariant \(C^r\)-diffeomorphisms for a principal \(G\) bundle \(M\) over a manifold \(B\) by relating it to the uniform perfectness of the group of \(C^r\)-diffeomorphisms of \(B\) and show that under a certain condition, \(\text{Diff}\,^r_{G,c}(M)_0\) is uniformly perfect if \(B\) belongs to a certain wide class of manifolds. We characterize the uniform perfectness of the group of equivariant \(C^r\)-diffeomorphisms for principal \(G\) bundles over closed manifolds of dimension less than or equal to 3, and in particular we prove the uniform perfectness of the group for the 3-dimensional case and \(r\neq 4\).
Keywords: uniform perfectness, principal \(G\) manifold, equivariant diffeomorphism.
Mathematics Subject Classification: 58D05, 57R30.
Cite this article as:
Kazuhiko Fukui, On the uniform perfectness of equivariant diffeomorphism groups for principal G manifolds, Opuscula Math. 37, no. 3 (2017), 381-388, http://dx.doi.org/10.7494/OpMath.2017.37.3.381
 
Download this article's citation as:
a .bib file (BibTeX), a .ris file (RefMan), a .enw file (EndNote)
or export to RefWorks.

RSS Feed

horizontal rule

ISSN 1232−9274, e-ISSN 2300−6919, DOI https://doi.org/10.7494/OpMath
Copyright © 2003−2017 OPUSCULA MATHEMATICA
Contact: opuscula@agh.edu.pl
Made by Tomasz Zabawa

horizontal rule

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.