Opuscula Math. 36, no. 2 (2016), 145-152
http://dx.doi.org/10.7494/OpMath.2016.36.2.145

 
Opuscula Mathematica

Bounds on the inverse signed total domination numbers in graphs

M. Atapour
S. Norouzian
S. M. Sheikholeslami
L. Volkmann

Abstract. Let \(G=(V,E)\) be a simple graph. A function \(f:V\rightarrow \{-1,1\}\) is called an inverse signed total dominating function if the sum of its function values over any open neighborhood is at most zero. The inverse signed total domination number of \(G\), denoted by \(\gamma_{st}^0(G)\), equals to the maximum weight of an inverse signed total dominating function of \(G\). In this paper, we establish upper bounds on the inverse signed total domination number of graphs in terms of their order, size and maximum and minimum degrees.

Keywords: inverse signed total dominating function, inverse signed total domination number.

Mathematics Subject Classification: 05C69.

Full text (pdf)

Opuscula Mathematica - cover

Cite this article as:
M. Atapour, S. Norouzian, S. M. Sheikholeslami, L. Volkmann, Bounds on the inverse signed total domination numbers in graphs, Opuscula Math. 36, no. 2 (2016), 145-152, http://dx.doi.org/10.7494/OpMath.2016.36.2.145

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.