Opuscula Mathematica
Opuscula Math. 35, no. 5 (), 567-594
http://dx.doi.org/10.7494/OpMath.2015.35.5.567
Opuscula Mathematica

Rigidity of monodromies for Appell's hypergeometric functions



Abstract. For monodromy representations of holonomic systems, the rigidity can be defined. We examine the rigidity of the monodromy representations for Appell's hypergeometric functions, and get the representations explicitly. The results show how the topology of the singular locus and the spectral types of the local monodromies work for the study of the rigidity.
Keywords: rigidity, monodromy, arrangement of hyperplanes.
Mathematics Subject Classification: 33C65, 57M05.
Cite this article as:
Yoshishige Haraoka, Tatsuya Kikukawa, Rigidity of monodromies for Appell's hypergeometric functions, Opuscula Math. 35, no. 5 (2015), 567-594, http://dx.doi.org/10.7494/OpMath.2015.35.5.567
 
Download this article's citation as:
a .bib file (BibTeX), a .ris file (RefMan), a .enw file (EndNote)
or export to RefWorks.

RSS Feed

horizontal rule

ISSN 1232−9274, e-ISSN 2300−6919, DOI http://dx.doi.org/10.7494/OpMath
Copyright © 2003−2017 OPUSCULA MATHEMATICA
Contact: opuscula@agh.edu.pl
Made by Tomasz Zabawa

horizontal rule

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.