Opuscula Mathematica
Opuscula Math. 35, no. 1 (), 117-126
http://dx.doi.org/10.7494/OpMath.2015.35.1.117
Opuscula Mathematica

The generalized sine function and geometrical properties of normed spaces


Abstract. Let \((X,\|\cdot\|)\) be a normed space. We deal here with a function \(s:X\times X\to\mathbb{R}\) given by the formula \[s(x,y):=\inf_{\lambda\in\mathbb{R}}\frac{\|x+\lambda y\|}{\|x\|}\] (for \(x=0\) we must define it separately). Then we take two unit vectors \(x\) and \(y\) such that \(y\) is orthogonal to \(x\) in the Birkhoff-James sense. Using these vectors we construct new functions \(\phi_{x,y}\) which are defined on \(\mathbb{R}\). If \(X\) is an inner product space, then \(\phi_{x,y}=\sin\) and, therefore, one may call this function a generalization of the sine function. We show that the properties of this function are connected with geometrical properties of the normed space \(X\).
Keywords: geometry of normed spaces, smoothness, strict convexity, Birkhoff-James orthogonality, conditional functional equations.
Mathematics Subject Classification: 46B20, 39B55, 39B52.
Cite this article as:
Tomasz Szostok, The generalized sine function and geometrical properties of normed spaces, Opuscula Math. 35, no. 1 (2015), 117-126, http://dx.doi.org/10.7494/OpMath.2015.35.1.117
 
Download this article's citation as:
a .bib file (BibTeX), a .ris file (RefMan), a .enw file (EndNote)
or export to RefWorks.

RSS Feed

horizontal rule

ISSN 1232−9274, e-ISSN 2300−6919, DOI https://doi.org/10.7494/OpMath
Copyright © 2003−2017 OPUSCULA MATHEMATICA
Contact: opuscula@agh.edu.pl
Made by Tomasz Zabawa

horizontal rule

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.