Opuscula Math. 35, no. 1 (2015), 117-126

Opuscula Mathematica

The generalized sine function and geometrical properties of normed spaces

Tomasz Szostok

Abstract. Let \((X,\|\cdot\|)\) be a normed space. We deal here with a function \(s:X\times X\to\mathbb{R}\) given by the formula \[s(x,y):=\inf_{\lambda\in\mathbb{R}}\frac{\|x+\lambda y\|}{\|x\|}\] (for \(x=0\) we must define it separately). Then we take two unit vectors \(x\) and \(y\) such that \(y\) is orthogonal to \(x\) in the Birkhoff-James sense. Using these vectors we construct new functions \(\phi_{x,y}\) which are defined on \(\mathbb{R}\). If \(X\) is an inner product space, then \(\phi_{x,y}=\sin\) and, therefore, one may call this function a generalization of the sine function. We show that the properties of this function are connected with geometrical properties of the normed space \(X\).

Keywords: geometry of normed spaces, smoothness, strict convexity, Birkhoff-James orthogonality, conditional functional equations.

Mathematics Subject Classification: 46B20, 39B55, 39B52.

Full text (pdf)

Opuscula Mathematica - cover

Cite this article as:
Tomasz Szostok, The generalized sine function and geometrical properties of normed spaces, Opuscula Math. 35, no. 1 (2015), 117-126, http://dx.doi.org/10.7494/OpMath.2015.35.1.117

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.