Opuscula Mathematica
Opuscula Math. 35, no. 1 (), 47-69
http://dx.doi.org/10.7494/OpMath.2015.35.1.47
Opuscula Mathematica

Strongly increasing solutions of cyclic systems of second order differential equations with power-type nonlinearities



Abstract. We consider \(n\)-dimensional cyclic systems of second order differential equations \[(p_i(t)|x_{i}'|^{\alpha_i -1}x_{i}')' = q_{i}(t)|x_{i+1}|^{\beta_i-1}x_{i+1},\] \[\quad i = 1,\ldots,n, \quad (x_{n+1} = x_1) \tag{\(\ast\)}\] under the assumption that the positive constants \(\alpha_i\) and \(\beta_i\) satisfy \(\alpha_1{\ldots}\alpha_n \gt \beta_1{\ldots}\beta_n\) and \(p_i(t)\) and \(q_i(t)\) are regularly varying functions, and analyze positive strongly increasing solutions of system (\(\ast\)) in the framework of regular variation. We show that the situation for the existence of regularly varying solutions of positive indices for (\(\ast\)) can be characterized completely, and moreover that the asymptotic behavior of such solutions is governed by the unique formula describing their order of growth precisely. We give examples demonstrating that the main results for (\(\ast\)) can be applied to some classes of partial differential equations with radial symmetry to acquire accurate information about the existence and the asymptotic behavior of their radial positive strongly increasing solutions.
Keywords: systems of differential equations, positive solutions, asymptotic behavior, regularly varying functions.
Mathematics Subject Classification: 34C11, 26A12.
Cite this article as:
Jaroslav Jaroš, Kusano Takaŝi, Strongly increasing solutions of cyclic systems of second order differential equations with power-type nonlinearities, Opuscula Math. 35, no. 1 (2015), 47-69, http://dx.doi.org/10.7494/OpMath.2015.35.1.47
 
Download this article's citation as:
a .bib file (BibTeX), a .ris file (RefMan), a .enw file (EndNote)
or export to RefWorks.

RSS Feed

horizontal rule

ISSN 1232−9274, e-ISSN 2300−6919, DOI http://dx.doi.org/10.7494/OpMath
Copyright © 2003−2017 OPUSCULA MATHEMATICA
Contact: opuscula@agh.edu.pl
Made by Tomasz Zabawa

horizontal rule

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.