Opuscula Mathematica
Opuscula Math. 35, no. 1 (), 5-19
http://dx.doi.org/10.7494/OpMath.2015.35.1.5
Opuscula Mathematica

Positive solutions with specific asymptotic behavior for a polyharmonic problem on Rn


Abstract. This paper is concerned with positive solutions of the semilinear polyharmonic equation \((-\Delta)^{m} u = a(x){u}^{\alpha}\) on \(\mathbb{R}^{n}\), where \(m\) and \(n\) are positive integers with \(n\gt 2m\), \(\alpha\in (-1,1)\). The coefficient \(a\) is assumed to satisfy \[a(x)\approx{(1+|x|)}^{-\lambda}L(1+|x|)\quad \text{for}\quad x\in \mathbb{R}^{n},\] where \(\lambda\in [2m,\infty)\) and \(L\in C^{1}([1,\infty))\) is positive with \(\frac{tL'(t)}{L(t)}\longrightarrow 0\) as \(t\longrightarrow \infty\); if \(\lambda=2m\), one also assumes that \(\int_{1}^{\infty}t^{-1}L(t)dt\lt \infty\). We prove the existence of a positive solution \(u\) such that \[u(x)\approx{(1+|x|)}^{-\widetilde{\lambda}}\widetilde{L}(1+|x|) \quad\text{for}\quad x\in \mathbb{R}^{n},\] with \(\widetilde{\lambda}:=\min(n-2m,\frac{\lambda-2m}{1-\alpha})\) and a function \(\widetilde{L}\), given explicitly in terms of \(L\) and satisfying the same condition at infinity. (Given positive functions \(f\) and \(g\) on \(\mathbb{R}^{n}\), \(f\approx g\) means that \(c^{-1}g\leq f\leq cg\) for some constant \(c\gt 1\).)
Keywords: asymptotic behavior, Dirichlet problem, Schauder fixed point theorem, positive bounded solutions.
Mathematics Subject Classification: 34B18, 35B40, 35J40.
Cite this article as:
Abdelwaheb Dhifli, Positive solutions with specific asymptotic behavior for a polyharmonic problem on Rn, Opuscula Math. 35, no. 1 (2015), 5-19, http://dx.doi.org/10.7494/OpMath.2015.35.1.5
 
Download this article's citation as:
a .bib file (BibTeX), a .ris file (RefMan), a .enw file (EndNote)
or export to RefWorks.

RSS Feed

horizontal rule

ISSN 1232−9274, e-ISSN 2300−6919, DOI http://dx.doi.org/10.7494/OpMath
Copyright © 2003−2017 OPUSCULA MATHEMATICA
Contact: opuscula@agh.edu.pl
Made by Tomasz Zabawa

horizontal rule

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.