Opuscula Mathematica
Opuscula Math. 34, no. 4 (), 763-775
http://dx.doi.org/10.7494/OpMath.2014.34.4.763
Opuscula Mathematica

Optimization of a fractional Mayer problem - existence of solutions, maximum principle, gradient methods



Abstract. In the paper, we study a linear-quadratic optimal control problem of Mayer type given by a fractional control system. First, we prove a theorem on the existence of a solution to such a problem. Next, using the local implicit function theorem, we derive a formula for the gradient of a cost functional under constraints given by a control system and prove a maximum principle in the case of a control constraint set. The formula for the gradient is used to implement the gradient methods for the problem under consideration.
Keywords: fractional Riemann-Liouville derivative, Mayer problem, existence of an optimal solution, maximum principle, gradient method.
Mathematics Subject Classification: 26A33, 49J15, 49K15, 49M37.
Cite this article as:
Dariusz Idczak, Stanislaw Walczak, Optimization of a fractional Mayer problem - existence of solutions, maximum principle, gradient methods, Opuscula Math. 34, no. 4 (2014), 763-775, http://dx.doi.org/10.7494/OpMath.2014.34.4.763
 
Download this article's citation as:
a .bib file (BibTeX), a .ris file (RefMan), a .enw file (EndNote)
or export to RefWorks.

RSS Feed

horizontal rule

ISSN 1232−9274, e-ISSN 2300−6919, DOI http://dx.doi.org/10.7494/OpMath
Copyright © 2003−2017 OPUSCULA MATHEMATICA
Contact: opuscula@agh.edu.pl
Made by Tomasz Zabawa

horizontal rule

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.