Opuscula Mathematica
Opuscula Math. 34, no. 4 (), 683-690
http://dx.doi.org/10.7494/OpMath.2014.34.4.683
Opuscula Mathematica

Constant-sign solutions for a nonlinear Neumann problem involving the discrete p-Laplacian



Abstract. In this paper, we investigate the existence of constant-sign solutions for a nonlinear Neumann boundary value problem involving the discrete \(p\)-Laplacian. Our approach is based on an abstract local minimum theorem and truncation techniques.
Keywords: constant-sign solution, difference equations, Neumann problem.
Mathematics Subject Classification: 39A10, 39A12, 34B15.
Cite this article as:
Pasquale Candito, Giuseppina D'Aguí, Constant-sign solutions for a nonlinear Neumann problem involving the discrete p-Laplacian, Opuscula Math. 34, no. 4 (2014), 683-690, http://dx.doi.org/10.7494/OpMath.2014.34.4.683
 
Download this article's citation as:
a .bib file (BibTeX), a .ris file (RefMan), a .enw file (EndNote)
or export to RefWorks.

RSS Feed

horizontal rule

ISSN 1232−9274, e-ISSN 2300−6919, DOI http://dx.doi.org/10.7494/OpMath
Copyright © 2003−2017 OPUSCULA MATHEMATICA
Contact: opuscula@agh.edu.pl
Made by Tomasz Zabawa

horizontal rule

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.