Opuscula Mathematica
Opuscula Math. 34, no. 3 (), 601-608
http://dx.doi.org/10.7494/OpMath.2014.34.3.601
Opuscula Mathematica

Positivity preserving results for a biharmonic equation under Dirichlet boundary conditions



Abstract. We prove a dichotomy result giving the positivity preserving property for a biharmonic equation with Dirichlet boundary conditions arising in MEMS models. We adapt some ideas in [H.-Ch. Grunau, G. Sweers, Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions, Math. Ann. 307 (1997), 589-626].
Keywords: biharmonic equation, positivity preserving, Dirichlet problem.
Mathematics Subject Classification: 35J40, 31B30.
Cite this article as:
Hanen Ben Omrane, Saïma Khenissy, Positivity preserving results for a biharmonic equation under Dirichlet boundary conditions, Opuscula Math. 34, no. 3 (2014), 601-608, http://dx.doi.org/10.7494/OpMath.2014.34.3.601
 
Download this article's citation as:
a .bib file (BibTeX), a .ris file (RefMan), a .enw file (EndNote)
or export to RefWorks.

RSS Feed

horizontal rule

ISSN 1232−9274, e-ISSN 2300−6919, DOI http://dx.doi.org/10.7494/OpMath
Copyright © 2003−2017 OPUSCULA MATHEMATICA
Contact: opuscula@agh.edu.pl
Made by Tomasz Zabawa

horizontal rule

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.