Opuscula Mathematica
Opuscula Math. 34, no. 3 (), 469-481
http://dx.doi.org/10.7494/OpMath.2014.34.3.469
Opuscula Mathematica

On the existence of positive periodic solutions for totally nonlinear neutral differential equations of the second-order with functional delay



Abstract. We prove that the totally nonlinear second-order neutral differential equation \[\frac{d^2}{dt^2}x(t)+p(t)\frac{d}{dt}x(t)+q(t)h(x(t))\] \[=\frac{d}{dt}c(t,x(t-\tau(t)))+f(t,\rho(x(t)),g(x(t-\tau(t))))\] has positive periodic solutions by employing the Krasnoselskii-Burton hybrid fixed point theorem.
Keywords: Krasnoselskii, neutral, positive periodic solution.
Mathematics Subject Classification: 34K20, 45J05, 45D05.
Cite this article as:
Emmanuel K. Essel, Ernest Yankson, On the existence of positive periodic solutions for totally nonlinear neutral differential equations of the second-order with functional delay, Opuscula Math. 34, no. 3 (2014), 469-481, http://dx.doi.org/10.7494/OpMath.2014.34.3.469
 
Download this article's citation as:
a .bib file (BibTeX), a .ris file (RefMan), a .enw file (EndNote)
or export to RefWorks.

RSS Feed

horizontal rule

ISSN 1232−9274, e-ISSN 2300−6919, DOI http://dx.doi.org/10.7494/OpMath
Copyright © 2003−2017 OPUSCULA MATHEMATICA
Contact: opuscula@agh.edu.pl
Made by Tomasz Zabawa

horizontal rule

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.