Opuscula Mathematica
Opuscula Math. 33, no. 4 (), 685-696
http://dx.doi.org/10.7494/OpMath.2013.33.4.685
Opuscula Mathematica

Universal third parts of any complete 2-graph and none of DK5



Abstract. It is shown that there is no digraph \(F\) which could decompose the complete digraph on 5 vertices minus any 2-arc remainder into three parts isomorphic to \(F\) for each choice of the remainder. On the other hand, for each \(n\ge3\) there is a universal third part \(F\) of the complete 2-graph \(^2K_n\) on \(n\) vertices, i.e., for each edge subset \(R\) of size \(|R|=\|^2K_n\| \bmod 3\), there is an \(F\)-decomposition of \(^2K_n-R\). Using an exhaustive computer-aided search, we find all, exactly six, mutually nonisomorphic universal third parts of the 5-vertex 2-graph. Nevertheless, none of their orientations is a universal third part of the corresponding complete digraph.
Keywords: decomposition, remainder, universal parts, isomorphic parts.
Mathematics Subject Classification: 05C35, 05C70.
Cite this article as:
Artur Fortuna, Zdzisław Skupień, Universal third parts of any complete 2-graph and none of DK5, Opuscula Math. 33, no. 4 (2013), 685-696, http://dx.doi.org/10.7494/OpMath.2013.33.4.685
 
Download this article's citation as:
a .bib file (BibTeX), a .ris file (RefMan), a .enw file (EndNote)
or export to RefWorks.

RSS Feed

horizontal rule

ISSN 1232−9274, e-ISSN 2300−6919, DOI https://doi.org/10.7494/OpMath
Copyright © 2003−2017 OPUSCULA MATHEMATICA
Contact: opuscula@agh.edu.pl
Made by Tomasz Zabawa

horizontal rule

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.