Opuscula Mathematica
Opuscula Math. 33, no. 3 (), 439-453
Opuscula Mathematica

Existence results for Dirichlet problems with degenerated p-Laplacian

Abstract. In this article, we prove the existence of entropy solutions for the Dirichlet problem \[(P)\left\{ \begin{array}{ll} & -{\rm div}[{\omega}(x){\vert{\nabla}u\vert}^{p-2}{\nabla}u]= f(x) - {\rm div}(G(x)),\ \ {\rm in} \ \ {\Omega} \\ & u(x)=0, \ \ {\rm in} \ \ {\partial\Omega} \end{array} \right.\] where \(\Omega\) is a bounded open set of \(\mathbb{R}^N\) \( (N \geq 2)\), \(f \in L^1(\Omega)\) and \(G/\omega \in [L^p(\Omega,\omega)]^N\).
Keywords: degenerate elliptic equations, entropy solutions, weighted Sobolev spaces.
Mathematics Subject Classification: 35J70, 35J60, 35J92.
Cite this article as:
Albo Carlos Cavalheiro, Existence results for Dirichlet problems with degenerated p-Laplacian, Opuscula Math. 33, no. 3 (2013), 439-453, http://dx.doi.org/10.7494/OpMath.2013.33.3.439
Download this article's citation as:
a .bib file (BibTeX), a .ris file (RefMan), a .enw file (EndNote)
or export to RefWorks.

RSS Feed

horizontal rule

ISSN 1232−9274, e-ISSN 2300−6919, DOI https://doi.org/10.7494/OpMath
Copyright © 2003−2017 OPUSCULA MATHEMATICA
Contact: opuscula@agh.edu.pl
Made by Tomasz Zabawa

horizontal rule

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.