Opuscula Mathematica
Opuscula Math. 33, no. 2 (), 283-291
http://dx.doi.org/10.7494/OpMath.2013.33.2.283
Opuscula Mathematica

Inequalities for regularized determinants of operators with the Nakano type modulars


Abstract. Let \(\{p_k\}\) be a nondecreasing sequence of integers, and \(A\) be a compact operator in a Hilbert space whose eigenvalues and singular values are \(\lambda_k(A)\) and \(s_k(A)\) \((k=1, 2, .... )\), respectively. We establish upper and lower bounds for the regularized determinant \[\prod_{k=1}^\infty (1-\lambda_k(A)){\rm exp}\;[\sum_{m=1}^{p_k-1} \frac{\lambda_k^m(A)}{m}],\mbox{ assuming that } \sum_{j=1}^{\infty} \frac{s_j^{p_j}(A/c)}{p_j}\lt \infty\] for a constant \(c\in (0,1)\).
Keywords: Hilbert space, compact operators, regularized determinant, Nakano type modular.
Mathematics Subject Classification: 47B10, 47A55.
Cite this article as:
Michael Gil', Inequalities for regularized determinants of operators with the Nakano type modulars, Opuscula Math. 33, no. 2 (2013), 283-291, http://dx.doi.org/10.7494/OpMath.2013.33.2.283
 
Download this article's citation as:
a .bib file (BibTeX), a .ris file (RefMan), a .enw file (EndNote)
or export to RefWorks.

RSS Feed

horizontal rule

ISSN 1232−9274, e-ISSN 2300−6919, DOI https://doi.org/10.7494/OpMath
Copyright © 2003−2017 OPUSCULA MATHEMATICA
Contact: opuscula@agh.edu.pl
Made by Tomasz Zabawa

horizontal rule

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.