Opuscula Math. 33, no. 2 (2013), 373-390
http://dx.doi.org/10.7494/OpMath.2013.33.2.373

 
Opuscula Mathematica

Existence of critical elliptic systems with boundary singularities

Jianfu Yang
Yimin Zhou

Abstract. In this paper, we are concerned with the existence of positive solutions of the following nonlinear elliptic system involving critical Hardy-Sobolev exponent \begin{equation*}\label{eq:1}(*) \left\{ \begin{array}{lll} -\Delta u= \frac{2\alpha}{\alpha+\beta}\frac{u^{\alpha-1}v^\beta}{|x|^s}-\lambda u^p, & \quad {\rm in}\quad \Omega,\\[2mm] -\Delta v= \frac{2\beta}{\alpha+\beta}\frac{u^\alpha v^{\beta-1}}{|x|^s}-\lambda v^p, & \quad {\rm in}\quad \Omega,\\[2mm] u\gt 0, v\gt 0, &\quad {\rm in}\quad \Omega,\\[2mm] u=v=0, &\quad {\rm on}\quad \partial\Omega, \end{array} \right. \end{equation*} where \(N\geq 4\) and \(\Omega\) is a \(C^1\) bounded domain in \(\mathbb{R}^N\) with \(0\in\partial\Omega\). \(0\lt s \lt 2\), \(\alpha+\beta=2^*(s)=\frac{2(N-s)}{N-2}\), \(\alpha,\beta\gt 1\), \(\lambda\gt 0\) and \(1 \lt p\lt \frac{N+2}{N-2}\). The case when 0 belongs to the boundary of \(\Omega\) is closely related to the mean curvature at the origin on the boundary. We show in this paper that problem \((*)\) possesses at least a positive solution.

Keywords: existence, compactness, critical Hardy-Sobolev exponent, nonlinear system.

Mathematics Subject Classification: 35J57, 35B33, 35B40.

Full text (pdf)

Opuscula Mathematica - cover

Cite this article as:
Jianfu Yang, Yimin Zhou, Existence of critical elliptic systems with boundary singularities, Opuscula Math. 33, no. 2 (2013), 373-390, http://dx.doi.org/10.7494/OpMath.2013.33.2.373

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.