Opuscula Mathematica
Opuscula Math. 33, no. 2 (), 209-222
http://dx.doi.org/10.7494/OpMath.2013.33.2.209
Opuscula Mathematica

Fractional order Riemann-Liouville integral inclusions with two independent variables and multiple delay



Abstract. In the present paper we investigate the existence of solutions for a system of integral inclusions of fractional order with multiple delay. Our results are obtained upon suitable fixed point theorems, namely the Bohnenblust-Karlin fixed point theorem for the convex case and the Covitz-Nadler for the nonconvex case.
Keywords: integral inclusion, left-sided mixed Riemann-Liouville integral, time delay solution, fixed point.
Mathematics Subject Classification: 26A33.
Cite this article as:
Saïd Abbas, Mouffak Benchohra, Fractional order Riemann-Liouville integral inclusions with two independent variables and multiple delay, Opuscula Math. 33, no. 2 (2013), 209-222, http://dx.doi.org/10.7494/OpMath.2013.33.2.209
 
Download this article's citation as:
a .bib file (BibTeX), a .ris file (RefMan), a .enw file (EndNote)
or export to RefWorks.

RSS Feed

horizontal rule

ISSN 1232−9274, e-ISSN 2300−6919, DOI http://dx.doi.org/10.7494/OpMath
Copyright © 2003−2017 OPUSCULA MATHEMATICA
Contact: opuscula@agh.edu.pl
Made by Tomasz Zabawa

horizontal rule

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.