Opuscula Mathematica
Opuscula Math. 32, no. 2 (), 317-326
http://dx.doi.org/10.7494/OpMath.2012.32.2.317
Opuscula Mathematica

An application of the Choquet theorem to the study of randomly-superinvariant measures


Abstract. Given a real valued random variable \(\Theta\) we consider Borel measures \(\mu\) on \(\mathcal{B}(\mathbb{R})\), which satisfy the inequality \(\mu(B) \geq E\mu(B-\Theta)\) (\(B \in \mathcal{B}(\mathbb{R})\)) (or the integral inequality \(\mu(B) \geq \int_{-\infty}^{+\infty} \mu(B-h)\gamma (dh)\)). We apply the Choquet theorem to obtain an integral representation of measures \(\mu\) satisfying this inequality. We give integral representations of these measures in the particular cases of the random variable \(\Theta\).
Keywords: backward translation operator, backward difference operator, integral inequality, extreme point.
Mathematics Subject Classification: 60E15, 26D10.
Cite this article as:
Teresa Rajba, An application of the Choquet theorem to the study of randomly-superinvariant measures, Opuscula Math. 32, no. 2 (2012), 317-326, http://dx.doi.org/10.7494/OpMath.2012.32.2.317
 
Download this article's citation as:
a .bib file (BibTeX), a .ris file (RefMan), a .enw file (EndNote)
or export to RefWorks.

RSS Feed

horizontal rule

ISSN 1232−9274, e-ISSN 2300−6919, DOI http://dx.doi.org/10.7494/OpMath
Copyright © 2003−2017 OPUSCULA MATHEMATICA
Contact: opuscula@agh.edu.pl
Made by Tomasz Zabawa

horizontal rule

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.