Opuscula Mathematica
Opuscula Math. 32, no. 2 (), 297-316
http://dx.doi.org/10.7494/OpMath.2012.32.2.297
Opuscula Mathematica

On self-adjoint operators in Krein spaces constructed by Clifford algebra Cl2



Abstract. Let \(J\) and \(R\) be anti-commuting fundamental symmetries in a Hilbert space \(\mathfrak{H}\). The operators \(J\) and \(R\) can be interpreted as basis (generating) elements of the complex Clifford algebra \(Cl_2(J,R):=\text{span}\{I,J,R,iJR\}\). An arbitrary non-trivial fundamental symmetry from \(Cl_2(J,R)\) is determined by the formula \(J_{\vec{\alpha}}=\alpha_1 J +\alpha_2 R+\alpha_3 iJR\), where \(\vec{\alpha} \in \mathbb{S}^2\). Let \(S\) be a symmetric operator that commutes with \(Cl_2(J,R)\). The purpose of this paper is to study the sets \(\Sigma_{J_{\vec{\alpha}}}\) (\(\forall \vec{\alpha} \in \mathbb{S}^2\)) of self-adjoint extensions of \(S\) in Krein spaces generated by fundamental symmetries \(J_{\vec{\alpha}}\) (\(J_{\vec{\alpha}}\)-self-adjoint extensions). We show that the sets \(\Sigma_{J_{\vec{\alpha}}}\) and \(\Sigma_{J_{\vec{\beta}}}\) are unitarily equivalent for different \(\vec{\alpha}, \vec{\beta} \in \mathbb{S}^2\) and describe in detail the structure of operators \(A \in \Sigma_{J_{\vec{\alpha}}}\) with empty resolvent set.
Keywords: Krein spaces, extension theory of symmetric operators, operators with empty resolvent set, \(J\)-self-adjoint operators, Clifford algebra \(Cl_2\).
Mathematics Subject Classification: 47A55, 47B25, 47A57, 81Q15.
Cite this article as:
Sergii Kuzhel, Olexiy Patsyuck, On self-adjoint operators in Krein spaces constructed by Clifford algebra Cl2, Opuscula Math. 32, no. 2 (2012), 297-316, http://dx.doi.org/10.7494/OpMath.2012.32.2.297
 
Download this article's citation as:
a .bib file (BibTeX), a .ris file (RefMan), a .enw file (EndNote)
or export to RefWorks.

RSS Feed

horizontal rule

ISSN 1232−9274, e-ISSN 2300−6919, DOI http://dx.doi.org/10.7494/OpMath
Copyright © 2003−2017 OPUSCULA MATHEMATICA
Contact: opuscula@agh.edu.pl
Made by Tomasz Zabawa

horizontal rule

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.