Opuscula Mathematica
Opuscula Math. 32, no. 2 (), 239-247
http://dx.doi.org/10.7494/OpMath.2012.32.2.239
Opuscula Mathematica

Uniformly continuous composition operators in the space of bounded Φ-variation functions in the Schramm sense





Abstract. We prove that any uniformly continuous Nemytskii composition operator in the space of functions of bounded generalized \(\Phi\)-variation in the Schramm sense is affine. A composition operator is locally defined. We show that every locally defined operator mapping the space of continuous functions of bounded (in the sense of Jordan) variation into the space of continous monotonic functions is constant.
Keywords: \(\Phi\)-variation in the sense of Schramm, uniformly continuous operator, regularization, Jensen equation, locally defined operators.
Mathematics Subject Classification: 47H30.
Cite this article as:
Tomás Ereú, Nelson Merentes, José L. Sánchez, Małgorzata Wróbel, Uniformly continuous composition operators in the space of bounded Φ-variation functions in the Schramm sense, Opuscula Math. 32, no. 2 (2012), 239-247, http://dx.doi.org/10.7494/OpMath.2012.32.2.239
 
Download this article's citation as:
a .bib file (BibTeX), a .ris file (RefMan), a .enw file (EndNote)
or export to RefWorks.

RSS Feed

horizontal rule

ISSN 1232−9274, e-ISSN 2300−6919, DOI http://dx.doi.org/10.7494/OpMath
Copyright © 2003−2017 OPUSCULA MATHEMATICA
Contact: opuscula@agh.edu.pl
Made by Tomasz Zabawa

horizontal rule

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.